Home>>Lipids>> Cyclooxygenase>>CAY10449

CAY10449

目录号 : GC43156

A selective IP receptor antagonist

CAY10449 Chemical Structure

规格 价格 库存 购买数量
1mg
¥789.00
现货
5mg
¥3,546.00
现货
10mg
¥6,304.00
现货
25mg
¥13,791.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Recently, a series of relatively simple compounds were found to be high-affinity ligands and functional antagonists for the human IP (prostacyclin) receptor. CAY10449 is one of the more potent of these. CAY10449 antagonizes the carbaprostacyclin-induced activation of human neuroblastoma adenylate cyclase, blocking cyclic AMP accumulation in a dose-dependent manner. Likewise, it inhibits the binding of tritiated iloprost to rodent neuroblastoma cells with a Ki value of about 3 nM. Although CAY10449 was not tested in rats, the related compound CAY10441 shows significant analgesic activity in standard antinociceptive assays.

Chemical Properties

Cas No. SDF
Canonical SMILES CC(C)Oc1ccc(cc1)C(=O)c1ccc(cc1)NC1=NCCN1
分子式 C19H21N3O2 分子量 323.4
溶解度 DMF: 2 mg/ml,DMF:PBS (pH 7.2)(1:1): .5 mg/ml,DMSO: 2 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.0921 mL 15.4607 mL 30.9215 mL
5 mM 0.6184 mL 3.0921 mL 6.1843 mL
10 mM 0.3092 mL 1.5461 mL 3.0921 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Effects of PGI2 analogues on Th1- and Th2-related chemokines in monocytes via epigenetic regulation

J Mol Med (Berl) 2011 Jan;89(1):29-41.PMID:21085923DOI:10.1007/s00109-010-0694-2.

Chemokines play important roles in asthma. Prostaglandin I(2) (PGI(2)) analogue is recently suggested as a candidate for treating asthma. However, the effects of PGI(2) analogues on the expression of Th1- and Th2-related chemokines are unknown. To this end, we investigated the in vitro effects of PGI(2) analogues on the expression of Th1-related chemokine interferon-γ-inducible protein-10 (IP-10/CXCL10) and Th2-related chemokine macrophage-derived chemokine (MDC/CCL22) in human monocytes. The human monocytes were pretreated with iloprost and treprostinil before lipopolysaccharide (LPS) stimulation. IP-10 and MDC were measured by ELISA. Intracellular signaling was investigated by cyclic adenosine monophosphate (cAMP) assay, western blot and chromatin immunoprecipitation. PGI(2) analogues enhanced MDC, but suppressed IP-10 expression in LPS-stimulated monocytes. These effects were reversed by the I prostanoid (IP) receptor antagonist (CAY10449), peroxisomal proliferators-activated receptor (PPAR)-α antagonist (GW6741) and PPAR-γ antagonist (GW9662). PGI(2) analogues increased intracellular cAMP levels. Forskolin, an adenyl cyclase activator, conferred similar effects. PGI(2) analogue-enhanced MDC expression was reduced by nuclear factor (NF) κB inhibitor (BAY 117085) and mitogen-activated protein kinase (MAPK)-p38 inhibitor (SB203580). PGI(2) analogues up-regulated phospho-p65 and phospho-p38 but down-regulated phospho-ERK expression. Iloprost enhanced H3 acetylation in MDC promoter area and suppressed H3 acetylation, H3K4, and H3K36 trimethylation in IP-10 promoter area. PGI(2) analogues enhanced MDC expression via the I prostanoid-receptor-cAMP, PPAR-α and PPAR-γ, NFκB-p65, MAPK-p38-ATF2 pathways and increasing histone acetylation, and suppressed IP-10 expression via the IP-receptor-cAMP, PPAR-γ, MAPK-ERK-ELK1 pathways and inhibiting histone acetylation and trimethylation in LPS-stimulated monocytes. PGI(2) analogues may therefore increase Th2 recruitment and inflammation.

A prostacyclin agonist with thromboxane inhibitory activity for airway allergic inflammation in mice

Clin Exp Allergy 2010 Feb;40(2):317-26.PMID:20015276DOI:10.1111/j.1365-2222.2009.03418.x.

Background: ONO-1301 is a novel drug that acts as a prostacyclin agonist with thromboxane A(2) (TxA(2)) synthase inhibitory activity. We investigated the effect of ONO-1301 on development of airway allergic inflammation. Methods: Mice sensitized and challenged to ovalbumin (OVA) received ONO-1301, OKY-046 (TxA(2) synthase inhibitor), beraprost, a prostacyclin receptor (IP) agonist, ONO-1301 plus CAY10449 (selective IP antagonist) or vehicle during the challenge period. Twenty-four hours after the OVA challenge, airway hyperresponsiveness (AHR) to methacholine was assessed and bronchoalveolar lavage was performed. Lung specimens were excised for goblet cell staining and analysis of lung dendritic cells (DCs). Bone marrow-derived dendritic cells (BMDCs) were generated, in the presence or absence of drugs, for analysis of DC function. Results: Mice that received ONO-1301 showed significantly lower AHR, airway eosinophilia, T-helper type 2 cytokine levels, mucus production and lung DCs numbers than vehicle-treated mice. These effects of ONO-1301 were mostly reversed by CAY10449. BMDCs treated with ONO-1301 alone showed lower DC functions, such as expression of costimulatory factors or stimulation to spleen T cells. Conclusions: These data suggest that ONO-1301 may suppress AHR and airway allergic inflammation through modulation of DCs, mainly mediated through the IP receptor. This agent may be effective as an anti-inflammatory drug in the treatment of asthma.

Stimulation of fat storage by prostacyclin and selective agonists of prostanoid IP receptor during the maturation phase of cultured adipocytes

Cytotechnology 2016 Dec;68(6):2417-2429.PMID:26946143DOI:10.1007/s10616-016-9960-7.

We have previously shown that cultured adipocytes have the ability to biosynthesize prostaglandin (PG) I2 called alternatively as prostacyclin during the maturation phase by the positive regulation of gene expression of PGI synthase and the prostanoid IP receptor. To clarify how prostacyclin regulates adipogenesis, we investigated the effects of prostacyclin and the specific agonists or antagonists for the IP receptor on the storage of fats during the maturation phase of cultured adipocytes. Exogenous PGI2 and the related selective agonists for the IP receptor including MRE-269 and treprostinil rescued the storage of fats attenuated by aspirin, a cyclooxygenase inhibitor. On the other hand, selective antagonists for IP such as CAY10441 and CAY10449 were effective to suppress the accumulation of fats as GW9662, a specific antagonist for peroxisome proliferator-activated receptor (PPAR)γ. Thus, pro-adipogenic action of prostacyclin can be explained by the action mediated through the IP receptor expressed at the maturation stage of adipocytes. Cultured adipocytes incubated with each of PGI2 and MRE-269 together with troglitazone, an activator for PPARγ, exhibited additively higher stimulation of fats storage than with either compound alone. The combined effect of MRE-269 and troglitazone was almost abolished by co-incubation with GW9662, but not with CAY10441. Increasing concentrations of troglitazone were found to reverse the inhibitory effect of CAY10441 in a dose-dependent manner while those of MRE-269 failed to rescue adipogenesis suppressed by GW9662, indicating the critical role of the PPARγ activation as a downstream factor for the stimulated adipogenesis through the IP receptor. Treatment of cultured adipocytes with cell permeable stable cAMP analogues or forskolin as a cAMP elevating agent partly restored the inhibitory effect of aspirin. However, excess levels of cAMP stimulated by forskolin attenuated adipogenesis. Supplementation with H-89, a cell permeable inhibitor for protein kinase A (PKA), had no effect on the promoting action of PGI2 or MRE-269 along with aspirin on the storage of fats, suggesting that the promotion of adipogenesis mediated by the IP receptor does not require the PKA activity.

Targeting of the prostacyclin specific IP1 receptor in lungs with molecular conjugates comprising prostaglandin I2 analogues

Biomaterials 2010 Apr;31(10):2903-11.PMID:20045181DOI:10.1016/j.biomaterials.2009.12.035.

Molecular conjugates comprising targeting ligands hold great promise for site-specific gene delivery to distant tumors and individual organs including the lung. Here we show that prostaglandin I2 analogues can be used to improve gene transfer efficiency of polyethylenimine (PEI) gene vectors on bronchial and alveolar epithelial cells in vitro and lungs of mice in vivo. Prostacyclin (IP1) receptor expression was confirmed in pulmonary epithelial cell lines by western blot. Iloprost (ILO) and treprostinil (TRP), two prostaglandin I2 analogues, were conjugated to fluorescein-labeled BSA (FLUO-BSA) and compared for IP1 receptor binding/uptake in different lung cell lines. Binding of FLUO-BSA-ILO was 2-4-fold higher than for FLUO-BSA-TRP and could be specifically inhibited by free ILO and IP1 receptor antagonist CAY10449. Internalization of FLUO-BSA-ILO was confirmed by confocal microscopy. Molecular conjugates of PEI and ILO (PEI-g-ILO) were synthesized with increasing coupling degree (F(ILO) (ILO:PEI) = 2, 5, 8, 16) and analyzed for DNA binding, particle formation and transfection efficiency. At optimized conditions (N/P 4, F(ILO) = 5), gene expression using PEI-g-ILO was significantly up to 46-fold higher than for PEI gene vectors and specifically inhibited by CAY10449. Gene expression in the lungs of mice after aerosol delivery was 14-fold higher with PEI-g-ILO F(ILO) = 5 than for PEI. We suggest that targeting of IP1 receptor using ILO represents a promising approach to improve pulmonary gene transfer.

Iloprost, a prostacyclin analog, inhibits the invasion of ovarian cancer cells by downregulating matrix metallopeptidase-2 (MMP-2) through the IP-dependent pathway

Prostaglandins Other Lipid Mediat 2018 Jan;134:47-56.PMID:29292033DOI:10.1016/j.prostaglandins.2017.12.002.

Recent studies have shown that a bioactive lipid prostacyclin (PGI2) plays a role in various cancers, including lung cancer. However, the specific function of PGI2 in ovarian cancer progression has not been determined. This study investigated the effects of PGI2 on cell growth, migration, and invasion in ovarian cancer cells using iloprost, a stable PGI2 analog. Iloprost significantly inhibited migration and invasion, but not cell growth, in a dose-dependent manner in human ovarian cancer cells (A2780 and SKOV3). Interestingly, the cell surface Gs protein-coupled PGI2 receptor IP was enhanced in human ovarian cancer cells. The inhibitory effect of iloprost on migration and invasion was entirely reversed by an IP antagonist (CAY10449) and IP siRNA, whereas the knockdown of peroxisome proliferator-activated receptor δ (PPARδ), a nuclear receptor of PGI2, did not rescue the effect of iloprost. Additionally, iloprost markedly decreased the expression of matrix metallopeptidase-2 and -9 (MMP-2 and MMP-9), which may be induced in the process of ovarian cancer metastasis. IP siRNA inhibited iloprost-reduced MMP-2 expression but not MMP-9 expression. Moreover, inhibition of protein kinase A (PKA) and overexpression of Akt and p38 rescued the inhibition of invasion and the reduction of MMP-2 expression by iloprost. Furthermore, iloprost-induced activation of PKA was associated with PKA-mediated Akt and p38 inactivation in ovarian cancer cells. Taken together, these results demonstrate that iloprost inhibits ovarian cancer cell invasion by downregulating MMP-2 expression via the IP-mediated PKA pathway. This study is the first to reveal a novel role for iloprost and to clarify its underlying mechanism in human ovarian cancer cells.