CAY10506
目录号 : GC43162A PPARγ agonist
Cas No.:292615-75-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Anti-diabetic drugs of the thiazolidinedione (TZD) structural class as well as α-lipoic acid activate peroxisome proliferator-activated receptor γ (PPARγ), a nuclear transcription factor that controls glucose metabolism and lipid homeostasis. CAY10506 is a hybrid lipoic acid-TZD derivative that transactivates human PPARγ with an EC50 value of 10 µM.
Cas No. | 292615-75-9 | SDF | |
Canonical SMILES | O=C(CCCCC1SSCC1)NCCOc1ccc(cc1)CC1SC(=O)NC1=O | ||
分子式 | C20H26N2O4S3 | 分子量 | 454.6 |
溶解度 | DMF: 5 mg/ml,DMSO: 5 mg/ml,DMSO:PBS(pH 7.2) (1:5): 0.15 mg/ml,Ethanol: 3 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.1997 mL | 10.9987 mL | 21.9974 mL |
5 mM | 0.4399 mL | 2.1997 mL | 4.3995 mL |
10 mM | 0.22 mL | 1.0999 mL | 2.1997 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Development and screening of byproduct for its secondary metabolites, antioxidant and anti-diabetic potential from anthracnose-infected fruits of pomegranate: a sustainable approach
3 Biotech 2021 Feb;11(2):74.PMID:33505829DOI:10.1007/s13205-020-02629-z.
The main focus of the present study was to analyze the antioxidant and anti-diabetic potential of fermentative byproduct, developed from anthracnose-infected pomegranate fruits. The analysis of fermented juice showed a reduction in total phenolic content, total flavanoid content, anthocyanins, and antioxidant potential over the time in 6 months as compared to fresh juice, while total protein and alcohol percent (11%) were increased. Measurements of antioxidant activity by DPPH, ABTS, superoxide radical scavenging activity, and reducing power assays were highly correlated to total phenolic content, with corresponding R 2 values as r DPPH = 0.88, r ABTS = 0.90, r SRS = 0.67, r RPA = 0.80. High-performance liquid chromatography clearly revealed that the increment of antioxidant activity is associated with the release of gallic acid, vanillin, and ferulic acid. LC-MS analysis identified 1263 metabolites in fresh juice, 1580 metabolites after 1 month of fermentation, and 1063 metabolites after 6 months of fermentation. Most of the detected metabolites are linked with antioxidant, anti-diabetic, phenolics, flavanoids, cardiac glycosides, anticancer, and anti-vomiting activity. Mainly, naphthofluorescein, CAY10599, CAY10506, aminofluoropropionic acid, and 8-azaadenosine anti-diabetic compounds were found in fresh juice and fermented juice. Administration of fresh juice and fermented juice for 1 month helped in the reduction of blood plasma glucose level from 112.6 to 94.73 mg/dL before food and 142.43 to 133.20 mg/dL after food as compared to prescribed medicine. The sensory attributes of fermented juice were well appreciated for taste, after taste, and flavor. Further research is necessary to improve the quality and stability of metabolites during storage. Supplementary information: The online version contains supplementary material available at 10.1007/s13205-020-02629-z.
Combined treatment with peroxisome proliferator-activated receptor (PPAR) gamma ligands and gamma radiation induces apoptosis by PPARγ-independent up-regulation of reactive oxygen species-induced deoxyribonucleic acid damage signals in non-small cell lung cancer cells
Int J Radiat Oncol Biol Phys 2013 Apr 1;85(5):e239-48.PMID:23332223DOI:10.1016/j.ijrobp.2012.11.040.
Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation-induced apoptosis and caspase-3-mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.