CB-25
目录号 : GC43210A stable analog of Δ9-THC
Cas No.:869376-63-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
CB-25 is a stable analog of δ9-tetrahydrocannabinol (THC) and anandamide (AEA). It exhibits high affinity for the central cannabinoid (CB1) and peripheral cannabinoid (CB2) receptors with Ki values of 5.2 and 13 nM, respectively. CB-25 behaves as an inverse agonist for the CB1 receptor as assessed in a cyclic AMP (cAMP) functional assay.
Cas No. | 869376-63-6 | SDF | |
Canonical SMILES | CCCCCc1cc(OCCCCCCCCCCC(=O)NC2CC2)cc(O)c1 | ||
分子式 | C25H41NO3 | 分子量 | 403.6 |
溶解度 | DMF: 30 mg/ml,DMSO: 30 mg/ml,Ethanol: 50 mg/ml,Ethanol:PBS (pH 7.2) (1:2): 0.3 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.4777 mL | 12.3885 mL | 24.777 mL |
5 mM | 0.4955 mL | 2.4777 mL | 4.9554 mL |
10 mM | 0.2478 mL | 1.2389 mL | 2.4777 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
In vitro and in vivo pharmacology of synthetic olivetol- or resorcinol-derived cannabinoid receptor ligands
Br J Pharmacol 2006 Oct;149(4):431-40.PMID:16953186DOI:10.1038/sj.bjp.0706888.
Background and purpose: We have previously reported the development of CB-25 and CB-52, two ligands of CB1 and CB2 cannabinoid receptors. We assessed here their functional activity. Experimental approach: The effect of the two compounds on forskolin-induced cAMP formation in intact cells or GTP-gamma-S binding to cell membranes, and their action on nociception in vivo was determined. Key results: CB-25 enhanced forskolin-induced cAMP formation in N18TG2 cells (EC50 approximately 20 nM, max. stimulation = 48%), behaving as an inverse CB1 agonist, but it stimulated GTP-gamma-S binding to mouse brain membranes, behaving as a partial CB1 agonist (EC50 =100 nM, max. stimulation = 48%). At human CB1 receptors, CB-25 inhibited cAMP formation in hCB1-CHO cells (EC50 = 1600 nM, max. inhibition = 68% of CP-55,940 effect). CB-52 inhibited forskolin-induced cAMP formation by N18TG2 cells (IC50 = 450 nM, max. inhibition = 40%) and hCB1-CHO cells (EC50 = 2600 nM, max. inhibition = 62% of CP-55,940 effect), and stimulated GTP-gamma-S binding to mouse brain membranes (EC50 = 11 nM, max. stimulation approximately 16%). Both CB-25 and CB-52 showed no activity in all assays of CB2-coupled functional activity and antagonized CP55940-induced stimulation of GTP-gamma-S binding to hCB2-CHO cell membranes. In vivo, both compounds, administered i.p., produced dose-dependent nociception in the plantar test carried out in healthy rats, and antagonised the anti-nociceptive effect of i.p. WIN55,212-2. In the formalin test in mice, however, the compounds counteracted both phases of formalin-induced nociception. Conclusions and implications: CB-25 and CB-52 behave in vitro mostly as CB1 partial agonists and CB2 neutral antagonists, whereas their activity in vivo might depend on the tonic activity of cannabinoid receptors.
Search of Novel Small Molecule Inhibitors for the Main Protease of SARS-CoV-2
Viruses 2023 Feb 20;15(2):580.PMID:36851795DOI:10.3390/v15020580.
The current outbreak of coronavirus disease 2019 (COVID-19) has prompted the necessity of efficient treatment strategies. The COVID-19 pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Main protease (Mpro), also called 3-chymotrypsin-like protease (3CL protease), plays an essential role in cleaving virus polyproteins for the functional replication complex. Therefore, Mpro is a promising drug target for COVID-19 therapy. Through molecular modelling, docking and a protease activity assay, we found four novel inhibitors targeting Mpro with the half maximal inhibitory concentration (IC50) and their binding affinities shown by the dissociation constants (KDs). Our new inhibitors CB-21, CB-25, CP-1 and LC24-20 have IC50s at 14.88 µM (95% Confidence Interval (95% CI): 10.35 µM to 20.48 µM), 22.74 µM (95% CI: 13.01 µM to 38.16 µM), 18.54µM (95% CI: 6.54 µM to 36.30 µM) and 32.87µM (95% CI: 18.37 µM to 54.80 µM)), respectively. The evaluation of interactions suggested that each inhibitor has a hydrogen bond or hydrophobic interactions with important residues, including the most essential catalytic residues: His41 and Cys145. All the four inhibitors have a much higher 50% lethal dose (LD50) compared with the well-known Mpro inhibitor GC376, demonstrating its low toxicity. These four inhibitors can be potential drug candidates for further in vitro and in vivo studies against COVID-19.