Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Cholesteryl Eicosapentaenoate

Cholesteryl Eicosapentaenoate Sale

(Synonyms: 20:5 Cholesteryl ester) 目录号 : GC43257

A cholesterol ester

Cholesteryl Eicosapentaenoate Chemical Structure

Cas No.:74892-97-0

规格 价格 库存 购买数量
1mg
¥496.00
现货
5mg
¥2,244.00
现货
10mg
¥3,975.00
现货
25mg
¥8,702.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Cholesteryl eicosapentaenoate is a cholesterol ester. It induces cytotoxicity in human monocyte-macrophages in a concentration-dependent manner at concentrations ranging from 88 to 880 μM. Cholesteryl eicosapentaenoate levels are elevated 1.89-fold in the serum of pediatric patients with extrahepatic biliary atresia and decreased in the serum and plasma of patients with Alzheimer's disease and abetalipoproteinemia, respectively, compared with healthy individuals.

Chemical Properties

Cas No. 74892-97-0 SDF
别名 20:5 Cholesteryl ester
Canonical SMILES C[C@]12C(C[C@@H](OC(CCC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)=O)CC2)=CC[C@]3([H])[C@]1([H])CC[C@@]4(C)[C@@]3([H])CC[C@]4([H])[C@H](C)CCCC(C)C
分子式 C47H74O2 分子量 671.1
溶解度 Chloroform: 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4901 mL 7.4505 mL 14.9009 mL
5 mM 0.298 mL 1.4901 mL 2.9802 mL
10 mM 0.149 mL 0.745 mL 1.4901 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

An improved method for quantification of cholesterol and cholesteryl esters in human monocyte-derived macrophages by high performance liquid chromatography with identification of unassigned cholesteryl ester species by means of secondary ion mass spectrometry

J Lipid Res 1997 Feb;38(2):401-9.PMID:9162758doi

The measurement of cholesteryl esters in human monocyte-derived macrophages using previously described high performance liquid chromatography methods is hampered by the presence in these cells of large amounts of triglycerides. We present a simple reversed phase high performance liquid chromatography protocol for quantification of cholesterol and cholesteryl esters in human monocyte/macrophages or other triglyceride-rich cells. Our method requires only lipid extraction and hydrolysis of triglycerides using a solution of ethanolic potassium hydroxide and is of sufficient sensitivity to allow measurement in 10(5) cells. Use of this protocol led to the isolation of eight previously unassigned cholesteryl ester peaks comprising 16% of the total cholesteryl ester content of human monocyte-derived macrophages. Using time-of-light secondary ion mass spectrometry and synthesized authentic standards, seven of these peaks were found to comprise cholesterol esterified with polyunsaturated n-3 (omega 3) (Cholesteryl Eicosapentaenoate, docosatrienoate, docosapentaenoate, and docosahexaenoate) and n-6 (omega 6) (cholesteryl docosatetraenoate, eicosadienoate, and eicosatrienoate) fatty acids. The remaining peak was shown to be the cholesteryl ester of n-7 (omega 7) palmitoleic acid by comparison with a commercially available standard. The identification of all the cholesteryl esters in cholesterol-loaded human monocyte-derived macrophages will assist future studies of lipid metabolism in these cells.

Evaluation of health benefits of sea lamprey (Petromyzon marinus) isolates using in vitro antiinflammatory and antioxidant assays

PLoS One 2021 Nov 3;16(11):e0259587.PMID:34731213DOI:10.1371/journal.pone.0259587.

Sea lamprey (Petromyzon marinus), a parasitic fish which survives on blood of other fishes, is consumed as a delicacy in many countries. Our earlier studies on sea lamprey compounds that showed potential to deter adult sea lampreys yielded several sterols, glycerides, free fatty acids, amino acids, organic acids and nitrogenous compounds. Therefore, this study was to assess the health-benefits of these compounds including additional isolates from HPLC fractions that kept aside due to lack of activity in sea lamprey deterrent assays. In vitro cyclooxygenase enzymes (COX-1 and -2) and lipid peroxidation (LPO) inhibitory assays, respectively, were used to determine antiinflammatory and antioxidant activities. Among the tested sterols, Cholesteryl Eicosapentaenoate and cholesteryl arachidonate exhibited IC50 values of 14.6 and 17.7 μg/mL for COX-1 and 17.3 and 20.8 μg/mL for COX-2, respectively. Cholesteryl palmitate and cholesteryl oleate showed moderate COX-1 and COX-2 enzyme inhibition at 25 μg/mL. Amino acids arginine, tyrosine, glutamic acid, tryptophan and asparagine also showed moderate COX-1 and COX-2 inhibition at the same concentration. Among the twelve new isolates from fractions that we did not investigate earlier, a novel uracil derivative petromyzonacil showed COX-1 and COX-2 inhibition at 25 μg/mL by 35 and 15%, respectively. Cholesterol esters tested at 25 μg/mL exhibited LPO inhibition between 38 and 82 percent. Amino acids cysteine, methionine, aspartic acid, threonine, tryptophan, histidine, glutamic acid, phenylalanine and tyrosine at 25 μg/mL showed LPO inhibition between 37 and 58% and petromyzonacil by 32%. These assay results indicate that consumption of sea lamprey offer health-benefits in addition to nutritional benefits.