cis,cis-Muconic acid
(Synonyms: 顺式-已二烯二酸) 目录号 : GC60110cis,cis-Muconic acid (cis,cis-Muconate; cis,cis-2,4-Hexadienedioic acid; cis,cis-2,4-Hexadienedioate) is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds.
Cas No.:1119-72-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
cis,cis-Muconic acid (cis,cis-Muconate; cis,cis-2,4-Hexadienedioic acid; cis,cis-2,4-Hexadienedioate) is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds.
Cas No. | 1119-72-8 | SDF | |
别名 | 顺式-已二烯二酸 | ||
Canonical SMILES | OC(=O)\C=C/C=C\C(O)=O | ||
分子式 | C6H6O4 | 分子量 | 142.11 |
溶解度 | DMSO : 250 mg/mL (1759.20 mM; Need ultrasonic) | 储存条件 | Store at RT |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 7.0368 mL | 35.184 mL | 70.368 mL |
5 mM | 1.4074 mL | 7.0368 mL | 14.0736 mL |
10 mM | 0.7037 mL | 3.5184 mL | 7.0368 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Recent Advances in Microbial Production of cis,cis-Muconic acid
Biomolecules 2020 Aug 25;10(9):1238.PMID:32854378DOI:10.3390/biom10091238.
cis,cis-Muconic acid (MA) is a valuable C6 dicarboxylic acid platform chemical that is used as a starting material for the production of various valuable polymers and drugs, including adipic acid and terephthalic acid. As an alternative to traditional chemical processes, bio-based MA production has progressed to the establishment of de novo MA pathways in several microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Pseudomonas putida, and Saccharomyces cerevisiae. Redesign of the metabolic pathway, intermediate flux control, and culture process optimization were all pursued to maximize the microbial MA production yield. Recently, MA production from biomass, such as the aromatic polymer lignin, has also attracted attention from researchers focusing on microbes that are tolerant to aromatic compounds. This paper summarizes recent microbial MA production strategies that involve engineering the metabolic pathway genes as well as the heterologous expression of some foreign genes involved in MA biosynthesis. Microbial MA production will continue to play a vital role in the field of bio-refineries and a feasible way to complement various petrochemical-based chemical processes.
An integrated yeast-based process for cis,cis-Muconic acid production
Biotechnol Bioeng 2022 Feb;119(2):376-387.PMID:34786710DOI:10.1002/bit.27992.
cis,cis-Muconic acid (CCM) is a promising polymer building block. CCM can be made by whole-cell bioconversion of lignin hydrolysates or de novo biosynthesis from sugar feedstocks using engineered microorganisms. At present, however, there is no established process for large-scale CCM production. In this study, we developed an integrated process for manufacturing CCM from glucose by yeast fermentation. We systematically engineered the CCM-producing Saccharomyces cerevisiae strain by rewiring the shikimate pathway flux and enhancing phosphoenolpyruvate supply. The engineered strain ST10209 accumulated less biomass but produced 1.4 g/L CCM (70 mg CCM per g glucose) in microplate assay, 71% more than the previously engineered strain ST8943. The strain ST10209 produced 22.5 g/L CCM in a 2 L fermenter with a productivity of 0.19 g/L/h, compared to 0.14 g/L/h achieved by ST8943 in our previous report under the same fermentation conditions. The fermentation process was demonstrated at pilot scale in 10 and 50 L steel tanks. In 10 L fermenter, ST10209 produced 20.8 g/L CCM with a CCM yield of 0.1 g/g glucose and a productivity of 0.21 g/L/h, representing the highest to-date CCM yield and productivity. We developed a CCM recovery and purification process by treating the fermentation broth with activated carbon at low pH and low temperature, achieving an overall CCM recovery yield of 66.3% and 95.4% purity. In summary, we report an integrated CCM production process employing engineered S. cerevisiae yeast.
Improvement of cis, cis-Muconic Acid Production in Saccharomyces cerevisiae through Biosensor-Aided Genome Engineering
ACS Synth Biol 2020 Mar 20;9(3):634-646.PMID:32058699DOI:10.1021/acssynbio.9b00477.
Muconic acid is a potential platform chemical for the production of nylon, polyurethanes, and terephthalic acid. It is also an attractive functional copolymer in plastics due to its two double bonds. At this time, no economically viable process for the production of muconic acid exists. To harness novel genetic targets for improved production of cis,cis-Muconic acid (CCM) in the yeast Saccharomyces cerevisiae, we employed a CCM-biosensor coupled to GFP expression with a broad dynamic response to screen UV-mutagenesis libraries of CCM-producing yeast. Via fluorescence activated cell sorting we identified a clone Mut131 with a 49.7% higher CCM titer and 164% higher titer of biosynthetic intermediate-protocatechuic acid (PCA). Genome resequencing of the Mut131 and reverse engineering identified seven causal missense mutations of the native genes (PWP2, EST2, ATG1, DIT1, CDC15, CTS2, and MNE1) and a duplication of two CCM biosynthetic genes, encoding dehydroshikimate dehydratase and catechol 1,2-dioxygenase, which were not recognized as flux controlling before. The Mut131 strain was further rationally engineered by overexpression of the genes encoding for PCA decarboxylase and AROM protein without shikimate dehydrogenase domain (Aro1pΔE), and by restoring URA3 prototrophy. The resulting engineered strain produced 20.8 g/L CCM in controlled fed-batch fermentation, with a yield of 66.2 mg/g glucose and a productivity of 139 mg/L/h, representing the highest reported performance metrics in a yeast for de novo CCM production to date and the highest production of an aromatic compound in yeast. The study illustrates the benefit of biosensor-based selection and brings closer the prospect of biobased muconic acid.
Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-Muconic acid by oxygen-sensitive enoate reductase
J Biotechnol 2018 Aug 20;280:49-54.PMID:29885337DOI:10.1016/j.jbiotec.2018.06.304.
Adipic acid (AA) is an important dicarboxylic acid used for the manufacture of nylon and polyurethane plastics. In this study, a novel adipic acid biosynthetic pathway was designed by extending the cis,cis-Muconic acid (MA) biosynthesis through biohydrogenation. Enoate reductase from Clostridium acetobutylicum (CaER), an oxygen-sensitive reductase, was demonstrated to have in vivo enzyme activity of converting cis,cis-Muconic acid to adipic acid under microaerobic condition. Engineered Escherichia coli strains were constructed to express the whole pathway and accumulated 5.8 ± 0.9 mg/L adipic acid from simple carbon sources. Considering the different oxygen demands between cis,cis-Muconic acid biosynthesis and its degradation, a co-culture system was constructed. To improve production, T7 promoter instead of lac promoter was used for higher level expression of the key enzyme CaER and the titer of adipic acid increased to 18.3 ± 0.6 mg/L. To decrease the oxygen supply to downstream strains expressing CaER, Vitreoscilla hemoglobin (VHb) was introduced to upstream strains for its ability on oxygen obtaining. This attempt further improved the production of this novel pathway and 27.6 ± 1.3 mg/L adipic acid was accumulated under microaerobic condition.
Biosynthesis of cis,cis-Muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
Appl Environ Microbiol 2012 Dec;78(23):8421-30.PMID:23001678DOI:10.1128/AEM.01983-12.
Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-Muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-Muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-Muconic acid.