Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Citraconic acid

Citraconic acid Sale

(Synonyms: 柠康酸) 目录号 : GC30598

Citraconic acid (CA) is a kind of methyl-branched fatty acids that exists in wild soybean.

Citraconic acid Chemical Structure

Cas No.:498-23-7

规格 价格 库存 购买数量
5g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Citraconic acid (CA) is a kind of methyl-branched fatty acids that exists in wild soybean.

[1] Mehlika Pulat, et al. Artif Cells Nanomed Biotechnol. 2014 Apr;42(2):121-7.

Chemical Properties

Cas No. 498-23-7 SDF
别名 柠康酸
Canonical SMILES O=C(O)/C(C)=C\C(O)=O
分子式 C5H6O4 分子量 130.1
溶解度 DMSO: ≥ 100 mg/mL (768.64 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.6864 mL 38.432 mL 76.864 mL
5 mM 1.5373 mL 7.6864 mL 15.3728 mL
10 mM 0.7686 mL 3.8432 mL 7.6864 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism

Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino acid metabolism, modulate cytokine/chemokine release and reduce interferon signalling, oxidative stress and the release of viral particles. Of the three isomers, citraconate is the strongest electrophile and nuclear factor-erythroid 2-related factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of itaconate by cis-aconitate decarboxylase (ACOD1), probably by competitive binding to the substrate-binding site. These results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate as the first naturally occurring ACOD1 inhibitor.

Itaconate Isomers in Bread

The naturally occurring isomers itaconate, mesaconate and citraconate possess immunomodulatory, antioxidative and antimicrobial properties. However, it is not known whether they occur in commonly consumed human foods. Considering that they can arise as a result of heat conversion, we tested whether they occur in bread, representing a commonly consumed baked good. Using high-performance liquid chromatography-tandem mass spectrometry, we measured concentrations of the three isomers and their potential precursors, citrate and cis-aconitate, in unbaked sourdough and dough, and in crumb and crust of baked bread. All three isomers were detected at low concentrations (<20 pmol/mg dry weight) in sourdough, dough, crumb and crust. Concentrations of itaconate and citraconate were substantially higher in crust than in crumb of wheat and rye bread, and a modest increase in mesaconate was observed in crust of rye bread. In contrast, cis-aconitate concentrations were considerably lower in crust, which was consistent with the conversion of cis-aconitate to itaconate isomers due to higher temperature of the dough surface during baking. Based on data on the average consumption of bread and related baked goods in Germany, the daily intake of itaconate isomers was estimated to be roughly 7-20 ?g. Thus, baked goods constitute a regular dietary source of low amounts of itaconate isomers. In order to enable studies on the impact of dietary intake of itaconate isomers on human health, their concentrations should be assessed in other foods that are subjected to high heating.

pH-Responsive Charge-Conversion Progelator Peptides

A simple strategy for generating stimuli-responsive peptide-based hydrogels via charge-conversion of a self-assembling peptide (SAP) is described. These materials are formulated as soluble, polyanionic peptides, containing maleic acid, citraconic acid, or dimethylmaleic acid masking groups on each lysine residue, which do not form assemblies, but instead flow easily through high gauge needles and catheters. Acid-induced mask hydrolysis renews the zwitterionic nature of the peptides with concomitant and rapid self-assembly via β-sheet formation into rehealable hydrogels. The use of different masks enables one to tune pH responsiveness and assembly kinetics. In anticipation of their potential for in vivo hydrogel delivery and use, progelators exhibit hemocompatibility in whole human blood, and their peptide components are shown to be noncytotoxic. Finally, demonstration of stimuli-induced self-assembly for dye sequestration suggests a simple, non-covalent strategy for small molecule encapsulation in a degradable scaffold. In summary, this simple, scalable masking strategy allows for preparation of responsive, dynamic self-assembling biomaterials. This work sets the stage for implementing biodegradable therapeutic hydrogels that assemble in response to physiological, disease-relevant states of acidosis.

Improvement of dicarboxylic acid production with Methylorubrum extorquens by reduction of product reuptake

The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids. KEY POINTS: ? 2,2-Difluorosuccinic acid is used to select for dicarboxylic acid uptake mutations. ? Deletion of dctA2 leads to reduction of dicarboxylic acid uptake. ? Transporter-deficient strains show improved production of citramalic acid.

The reaction of 1-vinylnaphthalene and 6-methoxy-1-vinylnaphthalene with citraconic anhydride, fumaric acid and mesaconic acid