Home>>Signaling Pathways>> Neuroscience>> Dopamine Receptor>>Clebopride malate

Clebopride malate Sale

(Synonyms: 苹果酸氯波必利) 目录号 : GC31418

Clebopride is a dopamine antagonist drug and is used to treat functional gastrointestinal disorder such as nausea or vomiting.

Clebopride malate Chemical Structure

Cas No.:57645-91-7

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥499.00
现货
5mg
¥446.00
现货
10mg
¥625.00
现货
50mg
¥1,339.00
现货
100mg
¥2,231.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Clebopride is a dopamine antagonist drug and is used to treat functional gastrointestinal disorder such as nausea or vomiting.

Chemical Properties

Cas No. 57645-91-7 SDF
别名 苹果酸氯波必利
Canonical SMILES O=C(O)C(O)CC(O)=O.O=C(NC1CCN(CC2=CC=CC=C2)CC1)C3=CC(Cl)=C(N)C=C3OC
分子式 C24H30ClN3O7 分子量 507.96
溶解度 DMSO : ≥ 34 mg/mL (66.93 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9687 mL 9.8433 mL 19.6866 mL
5 mM 0.3937 mL 1.9687 mL 3.9373 mL
10 mM 0.1969 mL 0.9843 mL 1.9687 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

[A case of respiratory dyskinesia due to clebopride malate]

Clebopride malate is therapeutically used for the treatment of peptic ulcer. This drug has potent antidopaminergic activity that causes acute dystonic reaction, parkinsonism and tardive dyskinesia as adverse effects. Here, we have reported an 86-year-old man who developed abnormal involuntary movement of respiratory muscles and lower limb muscles after this drug had been given for four months. This involuntary movement appeared spontaneously at resting state and disappeared during sleep. Surface EMG demonstrated a synchronous grouping discharge in m. orbicularis oris, m. sternocleidomastoideus and m. interstales which synchronized with diaphragmatic movement on cinefluorography. Involuntary movement of the lower limbs was synchronous bilaterally and had little relationship with diaphragmatic movement. This involuntary movement was irregular not only in rhythm but also in duration. According to this irregular nature, we diagnosed this involuntary movement as respiratory dyskinesia with limb dyskinesia that belongs to tardive dyskinesia. After cessation of clebopride malate limb dyskinesia disappeared rapidly and respiratory dyskinesia markedly decreased. We emphasize that respiratory dyskinesia should be differentiated from psychogenic hyperventilation as easily misdiagnosed on initial examination.

A phase I trial of a new antiemetic drug--clebopride malate--in cisplatin-treated patients

Clebopride, a new benzamide derivative, has, in common with the other members of this group, antidopaminergic activity. In animals, its therapeutic ratio is superior to that of metoclopramide at doses free of side effects associated with hyperprolactinemia and extrapyramidal symptoms. The present study was designed to define the maximum tolerated dose (MTD) in patients with advanced histologically-proven cancer, treated with cisplatin at a dose of greater than 50 mg/m2. Most of them were pretreated and refractory to standard antiemetics. Clebopride was started at a dosage of 0.10 mg/kg in a group of 6 patients and escalated by 0.2 mg at each dose level. A total of 30 patients were included. Side effects include somnolence, diarrhea and extrapyramidal-like symptoms. The latter occurred at almost all dose levels in 14% of the cycles and limited continuation of the study. Activity in this group of patients was encouraging but, considering the rate of extrapyramidal symptoms, further dose escalation is not indicated and activity at lower, nontoxic levels should be investigated.

Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry

A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

Simultaneous determination of clebopride and a major metabolite N-desbenzylclebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry

A procedure for the simultaneous assay of clebopride and its major metabolite N-desbenzylclebopride in plasma has been developed. The method utilizes capillary gas chromatography-negative-ion chemical ionization mass spectrometry with selected-ion monitoring of characteristic ions. Employing 2-ethoxy analogues as internal standards, the benzamides were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyric anhydride produced volatile mono- and diheptafluorobutyryl derivatives of clebopride and N-desbenzylclebopride, respectively. The methane negative-ion mass spectra of these derivatives exhibited intense high-mass ions ideal for specific quantitation of low levels in biological fluids. Using this procedure the recovery of the drug and metabolite from human plasma was found to be 84.4 +/- 1.5% (n = 3) and 77.4 +/- 4.7% (n = 3), respectively, at 0.5 ng/ml. Measurement of both compounds down to 0.10 ng/ml with a coefficient of variation of less than 10.5% is described. Plasma levels are reported in four volunteers up to 24 h following oral administration of 1 mg of clebopride malate salt.

Partial least-squares regression for the quantitation of pharmaceutical dosages in control analyses

A spectrophotometric method for the simultaneous determination of the active principle and a flavouring agent in syrups containing additional excipients is proposed. The calibration matrix must include all the variability expected in the samples and this is achieved using laboratory-made mixtures and production samples in order to ensure correct results. The optimum number of principal components for the regression model was selected by using various procedures. The proposed method was used to quantify samples from different production batches. The results are compared with those provided by HPLC.