CP-409092
目录号 : GC31052CP-409092是GABA(A)的部分激动剂,主要用于抗焦虑研究。
Cas No.:194098-25-4
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
CP-409092 is a GABA(A) partial agonist, used for the treatment of anxiety.
The pharmacokinetics of CP-409,092 following single intravenous and oral doses of 4 and 15 mg/kg, respectively, are characterized by high clearance of 169+ or -18 mL/min/kg, a volume of distribution of 8.99+ or -1.46 L/kg, and an oral bioavailability of 2.9%+ or -3%. Following oral administration of 100 mg/kg [14C]CP-409,092, the total recovery is 89.1%+ or -3.2% for male rats and 89.3%+ or -0.58% for female rats[1].
[1]. Kamel A, et al. Metabolism, pharmacokinetics and excretion of the GABA(A) receptor partial agonist [(14)C]CP-409,092 in rats. Xenobiotica. 2010 Jun;40(6):400-14.
Cas No. | 194098-25-4 | SDF | |
Canonical SMILES | O=C(C1=CNC2=C1C(CCC2)=O)NC3=CC=C(CNC)C=C3 | ||
分子式 | C17H19N3O2 | 分子量 | 297.35 |
溶解度 | DMSO: 41.67 mg/mL (140.14 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.363 mL | 16.8152 mL | 33.6304 mL |
5 mM | 0.6726 mL | 3.363 mL | 6.7261 mL |
10 mM | 0.3363 mL | 1.6815 mL | 3.363 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Dog colonoscopy model for predicting human colon absorption
Purpose: This study was conducted to develop and validate a dog colon model that predicts colon permeability in humans. Methods: The following compounds were studied: Class 1 highly soluble (HS)/highly permeable (HP): aminophylline, propranolol, CP-409092; Class 2 LS/HP: nifedipine; trovafloxacin, sertraline; Class 3 HS/LP: azithromycin, atenolol, CP-331684, CP-424391; Class 4 LS/LP: CJ-13610. Administration to dogs was made 30 cm cranial to the anal sphincter with a lubricated Schott Model VFS-5 flexible endoscope. The bioavailability of the compound following the colon administration in dogs, relative to the same formulation administered orally (relative bioavailability), was determined. Results: Except for atenolol, a small hydrophillic molecule, the relative bioavailability from administration to the colon of the dog correlated well with the following compound properties: high solubility and high, passive permeability > high solubility, low permeability > low solubility, high, passive permeability approximately low solubility, low permeability. Conclusion: The dog colon model is proposed as a surrogate for human intubation studies when the controlled release candidate falls in BCS Classes 2 (LS/HP), 3 (HS/LP), and 4 (LS/LP). However, no human intubation or dog colon studies are required for Class 1 (HS/HP), as these compounds are likely to be well absorbed from the colon.
Metabolism, pharmacokinetics and excretion of the GABA(A) receptor partial agonist [(14)C]CP-409,092 in rats
The metabolism and excretion of a GABA(A) partial agonist developed for the treatment of anxiety, CP-409,092; 4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid (4-methylaminomethyl-phenyl)-amide, were studied in rats following intravenous and oral administration of a single doses of [(14)C]CP-409,092. The pharmacokinetics of CP-409,092 following single intravenous and oral doses of 4 and 15 mg kg(-1), respectively, were characterized by high clearance of 169 + or - 18 ml min(-1) kg(-1), a volume of distribution of 8.99 + or - 1.46 l kg(-1), and an oral bioavailability of 2.9% + or - 3%. Following oral administration of 100 mg kg(-1) [(14)C]CP-409,092, the total recovery was 89.1% + or - 3.2% for male rats and 89.3% + or - 0.58% for female rats. Approximately 87% of the radioactivity recovered in urine and faeces were excreted in the first 48 h. A substantial portion of the radioactivity was measured in the faeces as unchanged drug, suggesting poor absorption and/or biliary excretion. There were no significant gender-related quantitative/qualitative differences in the excretion of metabolites in urine or faeces. The major metabolic pathways of CP-409,092 were hydroxylation(s) at the oxo-tetrahydro-indole moiety and oxidative deamination to form an aldehyde intermediate and subsequent oxidation to form the benzoic acid. The minor metabolic pathways included N-demethylation and subsequent N-acetylation and oxidation. The present work demonstrates that oxidative deamination at the benzylic amine of CP-409,092 and subsequent oxidation to form the acid metabolite seem to play an important role in the metabolism of the drug, and they contribute to its oral clearance and low exposure.
In vitro-in vivo correlation for intrinsic clearance for CP-409,092 and sumatriptan: a case study to predict the in vivo clearance for compounds metabolized by monoamine oxidase
Oxidative deamination of the GABA(A) partial agonist CP-409,092 and sumatriptan represents a major metabolic pathway and seems to play an important role for the clearance of these two compounds. Similar to sumatriptan, human mitochondrial incubations with deprenyl and clorgyline, probe inhibitors of monoamine oxidase B and monoamine oxidase A (MAO-B and MAO-A), respectively, showed that CP-409,092 was metabolized to a large extent by the enzyme MAO-A. The metabolism of CP-409,092 and sumatriptan was therefore studied in human liver mitochondria and in vitro intrinsic clearance (CL(int)) values were determined and compared to the corresponding in vivo oral clearance (CL(PO)) values. The overall objective was to determine whether an in vitro-in vivo correlation (IVIVC) could be described for compounds cleared by MAO-A. The intrinsic clearance, CL(int), of CP-409,092 was approximately 4-fold greater than that of sumatriptan (CL(int), values were calculated as 0.008 and 0.002 ml/mg/min for CP-409,092 and sumatriptan, respectively). A similar correlation was observed from the in vivo metabolic data where the unbound oral clearance, CL(u)(PO), values in humans were calculated as 724 and 178 ml/min/kg for CP-409,092 and sumatriptan, respectively. The present work demonstrates that it is possible to predict in vivo metabolic clearance from in vitro metabolic data for drugs metabolized by the enzyme monoamine oxidase.
Understanding the clinical pharmacokinetics of a GABAA partial agonist by application of in vitro tools
1. 4-Oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxylic acid (4-methylaminomethyl-phenyl)-amide (1), developed for general anxiety disorder, was discontinued from clinical development due to unsuitable oral pharmacokinetics. 2. In humans, (1) demonstrated an unacceptable high apparent oral clearance (Cl(p)/F) that also demonstrated a supraproportional dose-exposure relationship. Secondary peaks in the plasma concentration-time profile suggested possible enterohepatic recirculation of (1). A combination of in vitro mechanistic tools was applied to better understand the processes underlying these complex clinical pharmacokinetic profiles of (1). 3. In metabolism experiments, (1) was shown to be a substrate of monoamine oxidase A (MAO-A) as well as being metabolized by cytochrome P450. The former appeared to be a high K(M) process with a high capacity, while the latter showed saturation between 1 and 10 microM, consistent with the supraproportional dose-exposure relationship. 4. In a sandwich-cultured hepatocyte model, (1) was shown to be a substrate for both uptake and efflux into the canicular space, which is consistent with the observation of pharmacokinetics suggestive of enterohepatic recirculation. Finally, in human epithelial colon adenocarcinoma cell line (Caco-2) and Madin-Darby canine kidney cells transwell flux experiments, (1) was shown to have relatively low permeability and a basolateral-to-apical flux ratio consistent with the activity of P-glycoprotein. 5. In combination, a compounding of the contributions of MAO-A, hepatic uptake and efflux transporters, and P-glycoprotein to the disposition of (1) may underlie the low oral exposure, saturable clearance, and aberrant concentration versus time profiles observed for this compound in humans.