Home>>Signaling Pathways>> Chromatin/Epigenetics>> Histone Demethylases>>CP2

CP2

目录号 : GC25304

CP2 is a cyclic peptide that inhibits the JmjC histone demethylases KDM4 with IC50 values of 42 nM and 29 nM for KDM4A and KDM4C, respectively.

CP2 Chemical Structure

规格 价格 库存 购买数量
5mg
¥1,519.00
现货
25mg
¥5,315.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

CP2 is a cyclic peptide that inhibits the JmjC histone demethylases KDM4 with IC50 values of 42 nM and 29 nM for KDM4A and KDM4C, respectively.

CP2 uniquely binds in the KDM4A substrate-binding pocket. It binds differently to, but competes with, histone substrates in the active site[1].

[1] Akane Kawamura, et al. Nature Communications. 2017.

Chemical Properties

Cas No. no CAS SDF Download SDF
分子式 C92H120N24O26S 分子量 2010.15
溶解度 Water: 100 mg/mL (49.75 mM); 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.4975 mL 2.4874 mL 4.9748 mL
5 mM 0.0995 mL 0.4975 mL 0.995 mL
10 mM 0.0497 mL 0.2487 mL 0.4975 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Evolution of CP2 transcription factors in Hexapoda

J Genet 2021;100:83.PMID:34787118doi

The CP2 transcription factors are highly conserved in metazoans, where they are divided into two groups: grainyhead and late SV40 factor (LSF). We traced their evolutionary history in the Hexapoda using over 500 insect transcriptomes, to test the hypothesis that the evolution of holometaboly involved novel isoforms of these genes. All insects appear to express at least one grainyhead and one LSFlike gene, regardless of life cycle, as in most known metazoa. No major evolutionary events in these gene families occurred during the evolution of insects.

Transcription factors CP2 and YY1 as prognostic markers in head and neck squamous cell carcinoma: analysis of The Cancer Genome Atlas and a second independent cohort

J Cancer Res Clin Oncol 2021 Mar;147(3):755-765.PMID:33315124DOI:10.1007/s00432-020-03482-6.

Purpose: The transcription factors YY1 and CP2 have been associated with tumor promotion and suppression in various cancers. Recently, simultaneous expression of both markers was correlated with negative prognosis in cancer. The aim of this study was to explore the expression of YY1 and CP2 in head and neck squamous cell carcinoma (HNSCC) patients and their association with survival. Methods: First, we analyzed mRNA expression and copy number variations (CNVs) of YY1 and CP2 using "The Cancer Genome Atlas" (TCGA) with 510 HNSCC patients. Secondly, protein expression was investigated via immunohistochemistry in 102 patients, who were treated in the Vienna General Hospital, utilizing a tissue microarray. Results: The median follow-up was 2.9 years (1.8-4.6) for the TCGA cohort and 10.3 years (6.5-12.8) for the inhouse tissue micro-array (TMA) cohort. The median overall survival of the TCGA cohort was decreased for patients with a high YY1 mRNA expression (4.0 vs. 5.7 years, p = 0.030, corr. p = 0.180) and high YY1-CNV (3.53 vs. 5.4 years, p = 0.0355, corr. p = 0.213). Furthermore, patients with a combined high expression of YY1 and CP2 mRNA showed a worse survival (3.5 vs. 5.4 years, p = 0.003, corr. p = 0.018). The mortality rate of patients with co-expression of YY1 and CP2 mRNA was twice as high compared to patients with low expression of one or both (HR 1.99, 95% CI 1.11-3.58, p = 0.021). Protein expression of nuclear YY1 and CP2 showed no association with disease outcome in our inhouse cohort. Conclusion: Our data indicate that simultaneous expression of YY1 and CP2 mRNA is associated with shorter overall survival. Thus, combined high mRNA expression might be a suitable prognostic marker for risk stratification in HNSCC patients. However, since we could not validate this finding at genomic or protein level, we hypothesize that unknown underlying mechanisms which regulate mRNA transcription of YY1 and CP2 are the actual culprits leading to a worse survival.

The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing

J Biol Chem 2008 Dec 26;283(52):36608-16.PMID:18955487DOI:10.1074/jbc.M806745200.

Leucyl-tRNA synthetase (LeuRS) has an insertion domain, called connective peptide 2 (CP2), either directly preceding or following the editing domain (CP1 domain), depending on the species. The global structures of the CP2 domains from all LeuRSs are similar. Although the CP1 domain has been extensively explored to be responsible for hydrolysis of mischarged tRNALeu, the role of the CP2 domain remains undefined. In the present work, deletion of the CP2 domain of Giardia lamblia LeuRS (GlLeuRS) showed that the CP2 domain is indispensable for amino acid activation and post-transfer editing and that it contributes to LeuRS-tRNALeu binding affinity. In addition, its functions are conserved in both eukaryotic/archaeal and prokaryotic LeuRSs from G. lamblia, Pyrococcus horikoshii (PhLeuRS), and Escherichia coli (EcLeuRS). Alanine scanning and site-directed mutagenesis assays of the CP2 domain identified several residues that are crucial for its various functions. Data from the chimeric mutants, which replaced the CP2 domain of GlLeuRS with either PhLeuRS or EcLeuRS, showed that the CP2 domain of PhLeuRS but not that of EcLeuRS can partially restore amino acid activation and post-transfer editing functions, suggesting that the functions of the CP2 domain are dependent on its location in the primary sequence of LeuRS.

CP2 gene as a useful viability marker for Cryptosporidium parvum

Parasitol Res 2008 Feb;102(3):381-7.PMID:18060431DOI:10.1007/s00436-007-0772-8.

The validity of the CP2 gene of Cryptosporidium parvum as a viability marker was evaluated using absolute quantitative real-time polymerase chain reaction (qPCR) assays. Total ribonucleic acid (RNA) was isolated from live and heat-killed C. parvum oocysts, and complementary deoxyribonucleic acid was synthesized and used as a template. The most accurate number of viable C. parvum oocysts was predicted when the CP2 gene was used as a target gene. The lower detection limit of the CP2 gene was ten oocysts, which was the most sensitive among examined target genes. With heat shock induction, only hsp70 messenger RNA (mRNA) was induced, and the predicted viable oocyst number was increased by heat shock for this marker. The CP2, hsp70, Cryptosporidium oocyst wall protein, and beta-tubulin mRNAs were not detected in heat-killed oocysts, but the 18S ribosomal ribonucleic acid (rRNA) showed heat stability until 48 h after heat killing. Although the 18S rRNA demonstrated the fastest response in crossing point (CP) value among the examined primer sets in qPCR, overestimation of viable oocysts was noted in the analysis with this gene. In conclusion, the CP2 gene was identified as the most sensitive, reliable, and accurate candidate of a viability marker of C. parvum by qPCR evaluation.

CP2 binding to the promoter is essential for the enhanced transcription of globin genes in erythroid cells

Mol Cells 2003 Feb 28;15(1):40-7.PMID:12661759doi

We have previously reported that the reduced level of CP2 suppresses the mouse alpha- and beta-globin gene expression and hemoglobin synthesis during terminal differentiation of mouse erythroleukemia (MEL) cells in vitro [Chae et al. (1999)]. As an extension of this study, we demonstrated that human alpha-, epsilon-, and gamma- globin genes were also suppressed by the reduced expression of CP2 in K562 cells. To address how much CP2 contributes in the regulation of globin gene expression, we measured transcriptional activities of the wild type alpha-globin promoter and its various factor-binding sites mutants in erythroid and nonerythroid cells. Interestingly, CP2 site dependent transcriptional activation occurred in an erythroid-cell specific manner, even though CP2 is ubiquitously expressed. In addition, CP2 site mutation within the alpha-promoter severely suppressed promoter activity in differentiated, but not in undifferentiated MEL cells, suggesting that the CP2 binding site is needed for the enhanced transcription of globin genes during erythroid differentiation. When the human beta-globin locus control region was linked to the alpha-promoter, suppression was more severe in the CP2 site mutant in differentiated MEL cells. Overall data indicate that CP2 is a major factor in the regulation of globin expression in human and mouse erythroid cells, and CP2 binding to the globin gene promoter is essential for the enhanced transcription of globin genes in erythroid differentiation.