Home>>Peptides>>Crosstide

Crosstide Sale

目录号 : GC30582

A peptide substrate for Akt

Crosstide Chemical Structure

Cas No.:171783-05-4

规格 价格 库存 购买数量
1mg
¥982.00
现货
5mg
¥3,927.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

After serum deprivation for 24 h, cells are incubated with digoxigenin-labeled sham protein or digoxigenin-labeled RV39 at an MOI of 1.0 for 10 min. Cell homogenates are immunoprecipitated with mouse anti-digoxigenin antibody and precipitates incubated with Crosstide and [γ-32P]ATP. Crosstide is a glycogen synthase kinase α/β fusion protein sequence (GRPRTSSFAEG) which is a substrate for Akt. Samples are processed for autoradiography and immunoblotting using rabbit anti-phospho-Tyr416 Src, mouse anti-Src (clone GD11), rabbit anti-phospho-Ser473, or rabbit anti-Akt.

References:

[1]. Bentley JK, et al. Rhinovirus activates interleukin-8 expression via a Src/p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells. J Virol. 2007 Feb;81(3):1186-94. Epub 2006 Nov 22.
[2]. Baer K, et al. Activation of a GST-tagged AKT2/PKBbeta. Biochim Biophys Acta. 2005 Oct 10;1725(3):340-7. Epub 2005 Apr 20.

产品描述

Crosstide is a synthetic peptide substrate for Akt.1 It corresponds to the amino acid sequence of glycogen synthase kinase 3 (GSK3) that surrounds the serine residue phosphorylated by p90 ribosomal S6 kinase 1 (RSK1) or p70 ribosomal S6 kinase (p70S6K). Crosstide has been used in the study of Akt activity.1,2 It is also a substrate for serum/glucocorticoid-regulated kinase family member 3 (SGK3).3

1.Cross, D.A.E., Slessi, D.R., Cohen, P., et al.Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase BNature378(6559)785-789(1995) 2.Tanti, J.-F., Grillo, S., Gremeaux, T., et al.Potential role of protein kinase B in glucose transporter 4 translocation in adipocytesEndocrinology138(5)2005-2010(1997) 3.Dai, F., Yu, L., He, H., et al.Human serum and glucocorticoid-inducible kinase-like kinase (SGKL) phosphorylates glycogen syntheses kinase 3 beta (GSK-3β) at serine-9 through direct interactionBiochem. Biophys. Res. Commun.293(4)1191-1196(2002)

Chemical Properties

Cas No. 171783-05-4 SDF
Canonical SMILES Gly-Arg-Pro-Arg-Thr-Ser-Ser-Phe-Ala-Glu-Gly
分子式 C48H77N17O17 分子量 1164.23
溶解度 Water : ≥ 50 mg/mL (42.95 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.8589 mL 4.2947 mL 8.5894 mL
5 mM 0.1718 mL 0.8589 mL 1.7179 mL
10 mM 0.0859 mL 0.4295 mL 0.8589 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Activation of a GST-tagged AKT2/PKBbeta

The protein kinase AKT is a key regulator for cell growth, cell survival and metabolic insulin action. However, the mechanism of activation of AKT in vivo, which presumably involves membrane recruitment of the kinase, oligomerization, and multiple phosphorylation events, is not fully understood. In the present study, we have expressed and purified dimeric GST-fusion proteins of human protein kinase AKT2 (DeltaPH-AKT2) in milligram quantities via the baculovirus expression system. Treatment of virus-infected insect cells with the phosphatase inhibitor okadaic acid (OA) led to phosphorylation of the two regulatory phosphorylation sites, Thr309 and Ser474, and to activation of the kinase. Likewise, phosphorylation of Thr309 in vitro by recombinant PDK1 or mutation of Thr309 and Ser474 to acidic residues rendered the kinase constitutively active. However, even though the specific activity of our AKT2 was increased 15-fold compared to previous reports, GST-mediated dimerization alone did not lead to an activation of the kinase. Whereas both mutagenesis and phosphorylation led to an increase in the turnover number of the enzyme, only the latter resulted in a marked reduction (20-fold) of the apparent Km value for the exogenous substrate Crosstide, indicating that this widely used mutagenesis only partially mimics phosphorylation. Kinetic analysis of GST-AKT2 demonstrates that phosphorylation of Thr309 in the activation loop of the kinase is largely responsible for the observed reduction in Km and for a subsequent 150-fold increase in the catalytic efficiency (k(cat)/Km) of the enzyme. Highly active AKT2 constructs were used in autophosphorylation reactions in vitro, where inactive AKT2 kinases served as substrates. As a matter of fact, we found evidence for a minor autophosphorylation activity of AKT2 but no significant autophosphorylation of any of the two regulatory sites, Thr309 or Ser474.

Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta

Protein kinase B (PKB) is a member of the second messenger-dependent family of serine/threonine kinases that has been implicated in signaling pathways downstream of growth factor receptor tyrosine kinases and phosphatidylinositol 3-kinase. Here we report the characterization of the human beta-isoform of PKB (PKBbeta). PKBbeta is ubiquitously expressed in a number of human tissues, with mRNA and protein levels elevated in heart, liver, skeletal muscle, and kidney. After transfection into HEK-293 or COS-1 cells, PKBbeta is activated 2- to 12-fold by mitogens and survival factors. Activation was due to phosphorylation on Thr-309 and Ser-474, which correspond to Thr-308 and Ser-473 implicated in the regulation of PKBalpha. Both phosphorylation and activation were prevented by the phosphatidylinositol 3-kinase inhibitor wortmannin. Moreover, membrane-targeted PKBbeta was constitutively activated when overexpressed in HEK-293 cells. Although the specific activity of PKBbeta was lower than that of PKBalpha toward Crosstide as a substrate (23 nmol/min/mg compared with 178 nmol/min/mg for PKBalpha), both enzymes showed similar substrate specificities. Using confocal microscopy, we show that activation of PKBbeta results in its nuclear translocation within 20 to 30 min after stimulation. These observations provide evidence that PKBbeta undergoes nuclear translocation upon mitogenic activation and support a role for PKB in signaling from receptor tyrosine kinases to the nucleus through phosphatidylinositol 3-kinase.

Rhinovirus activates interleukin-8 expression via a Src/p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells

Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o- human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85alpha PI 3-kinase, p110beta PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P(3). The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o- and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110beta PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110beta PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts.

Human serum and glucocorticoid-inducible kinase-like kinase (SGKL) phosphorylates glycogen syntheses kinase 3 beta (GSK-3beta) at serine-9 through direct interaction

Serum and glucocorticoid-inducible kinase-like kinase (SGKL) has been identified as a new integrator that decodes lipid signals produced by the activation of phosphoinositide 3-kinase (PI3K). SGKL is activated via its lipid-binding domain (phox homology domain) in response to PI3K signaling. However, downstream targets of SGKL as well as the role of SGKL as a mediator in PI3K signaling in human tissues remain to be established. In this study, we identified human glycogen synthase kinase 3 beta (GSK-3beta) as a specific interacting partner with SGKL in a yeast two-hybrid screening of human brain cDNA library. The association between these two proteins is confirmed independently in human embryonic kidney (HEK293) cells by co-immunoprecipitation. Furthermore, the kinase activity of wild-type SGKL was required for the in vitro phosphorylation of a GSK-3 crosstide fusion protein at serine-21/9 as demonstrated with a Phospho-GSK-3alpha/beta (Ser21/9) specific antibody. The present results provide strong evidences that SGKL could utilize GSK-3beta as a direct downstream target by phosphorylating GSK-3beta at serine-9.

Improved yields for baculovirus-mediated expression of human His(6)-PDK1 and His(6)-PKBbeta/Akt2 and characterization of phospho-specific isoforms for design of inhibitors that stabilize inactive conformations

PDK1 and PKB/Akt have a pleckstrin homology (PH) domain at the C-terminus and N-terminus, respectively, which stabilizes an unphosphorylated, autoinhibited conformation. Binding of the PH domain to a phospholipid second messenger causes relief of autoinhibition, which results in kinase phosphorylation and activation. Baculovirus-mediated expression in Sf9 insect cells of both His(6)-PDK1 and His(6)-PKBbeta/Akt2 were optimized, which significantly improved the yields (5-fold) of the affinity purified enzymes over previously reported values. Isoelectric focusing (IEF) and Western analyses indicated that the apparent V(max)=192+/-13 U/mg and K(m) (PDK-Tide)=55+/-10 microM of purified His(6)-PDK1 results from a mixture of at least three different phospho-specific isoforms (pI values of 6.8, 6.5, and 6.4). A purely unphosphorylated isoform of His(6)-PDK1 (pI=6.8) was generated by treatment with lambda protein phosphatase (lambdaPP), which decreased V(max) to 2.4+/-0.4 U/mg and increased K(m) (PDK-Tide) to 217+/-61 microM. Isoelectric focusing and Western analyses indicated that the apparent V(max)=0.21+/-0.03 U/mg and K(m) (Crosstide)=87+/-30 microM of purified His(6)-PKBbeta/Akt2 results from a mixture of the enzyme monophosphorylated either at Ser-474 ( approximately 90%) or at Thr-309 ( approximately 10%). A purely unphosphorylated isoform of His(6)-PKBbeta/Akt2 (pI=6.4) was generated by treatment with lambdaPP, which decreased V(max) approximately 2-fold. The optimization of high-level production and detailed characterization of purified and lambdaPP-treated His(6)-PDK1 and His(6)-PKBbeta/Akt2 will facilitate detailed structural and kinetic studies aimed at understanding the mechanism of second messenger-induced activation.