CU-32
目录号 : GC47128A cGAS inhibitor
Cas No.:2400954-16-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
CU-32 is an inhibitor of cyclic GMP-AMP (cGAMP) synthase (cGAS; IC50 = 0.45 µM).1 It reduces DNA-, but not Sendai virus-, induced dimerization of IFN regulatory factor 3 in THP-1 cells, indicating selectivity for the cGAS DNA sensing pathway over the RIG-I-MAVS RNA sensing pathway. It is also selective for cGAS over toll-like receptors (TLRs) at 50 µM. CU-32 decreases IFN-stimulatory DNA-induced production of IFN-β in THP-1 cells when used at concentrations of 10, 30, and 100 µM.
1.Padilla-Salinas, R., Sun, L., Anderson, R., et al.Discovery of small-molecule cyclic GMP-AMP synthase inhibitorsJ. Org. Chem.85(3)1579-1600(2020)
Cas No. | 2400954-16-5 | SDF | |
Canonical SMILES | IC1=CC=C(NC2=NC(N)=NC(C(OC)=O)=N2)C=C1 | ||
分子式 | C11H10IN5O2 | 分子量 | 371.1 |
溶解度 | DMF: 30 mg/ml,DMSO: 30 mg/ml,DMSO:PBS (pH 7.2) (1:5): 0.16 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.6947 mL | 13.4735 mL | 26.9469 mL |
5 mM | 0.5389 mL | 2.6947 mL | 5.3894 mL |
10 mM | 0.2695 mL | 1.3473 mL | 2.6947 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors
J Org Chem 2020 Feb 7;85(3):1579-1600.PMID:31829590DOI:10.1021/acs.joc.9b02666.
Cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) (cGAS), a cytosolic DNA sensor, plays an important role in the type I interferon response. DNA from either invading microbes or self-origin triggers the enzymatic activity of cGAS. Aberrant activation of cGAS is associated with various autoimmune disorders. Only one selective probe exists for inhibiting cGAS in cells, while others are limited by their poor cellular activity or specificity, which underscores the urgency for discovering new cGAS inhibitors. Here, we describe the development of new small-molecule human cGAS (hcGAS) inhibitors (80 compounds synthesized) with high binding affinity in vitro and cellular activity. Our studies show CU-32 and CU-76 selectively inhibit the DNA pathway in human cells but have no effect on the RIG-I-MAVS or Toll-like receptor pathways. CU-32 and CU-76 represent a new class of hcGAS inhibitors with activity in cells and provide a new chemical scaffold for designing probes to study cGAS function and development of autoimmune therapeutics.
Ultrasonic modulation of phase separation and corrosion resistance for ternary Cu-Sn-Bi immiscible alloy
Ultrason Sonochem 2019 Jun;54:281-289.PMID:30712857DOI:10.1016/j.ultsonch.2019.01.029.
The effect of power ultrasound on the liquid phase separation of ternary CU-32%Sn-20%Bi immiscible alloy is experimentally investigated, which shows that as compared with the layered structure formed under static condition, the macrosegregation resulted from liquid phase separation is remarkably reduced with the increase of ultrasonic amplitude. A homogenous microstructure characterized by refined (Bi) particles dispersing uniformly on the (Cu3Sn) matrix is obtained when the ultrasonic amplitude reaches the highest value of 24 μm. This is mainly ascribed to the ultrasonically induced cavitation and acoustic streaming, which promotes the nucleation, the fragmentation, and the dispersion of (Bi) droplets. The finally solidified immiscible alloy exhibits obvious improvements in electrochemical corrosion resistance, microhardness and wear-resisting if compared with those in static solidification. These results prove that applying power ultrasound is an effective way to modulate the liquid phase separation and enhance the applied performance for immiscible alloys.