Home>>Natural Products>>D-Fructose

D-Fructose Sale

(Synonyms: D-果糖; D(-?)?-?Fructose) 目录号 : GC39673

Fructose (D-(-)-Fructose, Fruit sugar, levulose, fructosteril, D-fructofuranose, D-arabino-hexulose) is a simple ketonic monosaccharide found in many plants.

D-Fructose Chemical Structure

Cas No.:57-48-7

规格 价格 库存 购买数量
10mM (in 1mL Water)
¥225.00
现货
500mg
¥225.00
现货
1g
¥360.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Fructose (D-(-)-Fructose, Fruit sugar, levulose, fructosteril, D-fructofuranose, D-arabino-hexulose) is a simple ketonic monosaccharide found in many plants.

Chemical Properties

Cas No. 57-48-7 SDF
别名 D-果糖; D(-?)?-?Fructose
Canonical SMILES OC[C@@H](O)[C@@H](O)[C@H](O)C(CO)=O
分子式 C6H12O6 分子量 180.16
溶解度 Insoluble in EtOH; ≥18.67 mg/mL in Water; ≥19.87 mg/mL in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.5506 mL 27.7531 mL 55.5062 mL
5 mM 1.1101 mL 5.5506 mL 11.1012 mL
10 mM 0.5551 mL 2.7753 mL 5.5506 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Bioelectrocatalytic performance of D-Fructose dehydrogenase

Bioelectrochemistry 2019 Oct;129:1-9.PMID:31063949DOI:10.1016/j.bioelechem.2019.04.024.

This review summarizes the bioelectrocatalytic properties of D-Fructose dehydrogenase (FDH), while taking into consideration its enzymatic characteristics. FDH is a membrane-bound flavohemo-protein with a molecular mass of 138 kDa, and it catalyzes the oxidation of D-Fructose to 5-keto-d-fructose. The characteristic feature of FDH is its strong direct-electron-transfer (DET)-type bioelectrocatalytic activity. The pathway of the DET-type reaction is discussed. An overview of the application of FDH-based bioelectrocatalysis to biosensors and biofuel cells is also presented, and the benefits and problems associated with it are extensively discussed.

1,5-anhydro-D-fructose from D-Fructose

Carbohydr Res 2007 Jul 2;342(9):1249-53.PMID:17368437DOI:10.1016/j.carres.2007.02.026.

1,5-anhydro-D-fructose was efficiently prepared from D-Fructose via regiospecific 1,5-anhydro ring formation of 2,3-O-isopropylidene-1-O-methyl(tolyl)sulfonyl-D-fructopyranose and subsequent deprotection.

Synthesis of 1-Deoxymannojirimycin from D-Fructose using the Mitsunobu Reaction

J Org Chem 2022 Dec 16;87(24):16895-16901.PMID:36460300DOI:10.1021/acs.joc.2c02174.

Three different Mitsunobu reactions have been investigated for the synthesis of 1-deoxymannojirimycin (1-DMJ) from D-Fructose. The highest yielding and most practical synthesis can be undertaken on a 10 g scale with minimal chromatography. In the key step, N,O-di-Boc-hydroxylamine reacts with methyl 1,3-isopropylidene-α-d-fructofuranose under Mitsunobu conditions to give 14. Acidic hydrolysis affords nitrone 15, which reduces quantitatively via catalytic hydrogenolysis to afford 1-DMJ (4) in 55% overall yield from D-Fructose (cf. 37% for azide route and 29% for nosyl route).

Metabolically Engineered Escherichia coli for Conversion of D-Fructose to D-Allulose via Phosphorylation-Dephosphorylation

Front Bioeng Biotechnol 2022 Jun 22;10:947469.PMID:35814008DOI:10.3389/fbioe.2022.947469.

D-Allulose is an ultra-low calorie sweetener with broad market prospects. As an alternative to Izumoring, phosphorylation-dephosphorylation is a promising method for D-allulose synthesis due to its high conversion of substrate, which has been preliminarily attempted in enzymatic systems. However, in vitro phosphorylation-dephosphorylation requires polyphosphate as a phosphate donor and cannot completely deplete the substrate, which may limit its application in industry. Here, we designed and constructed a metabolic pathway in Escherichia coli for producing D-allulose from D-Fructose via in vivo phosphorylation-dephosphorylation. PtsG-F and Mak were used to replace the fructose phosphotransferase systems (PTS) for uptake and phosphorylation of D-Fructose to fructose-6-phosphate, which was then converted to D-allulose by AlsE and A6PP. The D-allulose titer reached 0.35 g/L and the yield was 0.16 g/g. Further block of the carbon flux into the Embden-Meyerhof-Parnas (EMP) pathway and introduction of an ATP regeneration system obviously improved fermentation performance, increasing the titer and yield of D-allulose to 1.23 g/L and 0.68 g/g, respectively. The E. coli cell factory cultured in M9 medium with glycerol as a carbon source achieved a D-allulose titer of ≈1.59 g/L and a yield of ≈0.72 g/g on D-Fructose.

Synthesis of natural/13C-enriched d-tagatose from natural/13C-enriched D-Fructose

Carbohydr Res 2021 Sep;507:108377.PMID:34303197DOI:10.1016/j.carres.2021.108377.

A concise, easily scalable synthesis of a rare ketohexose, d-tagatose, was developed, that is compatible with the preparation of d-[UL-13C6]tagatose. Epimerization of the widely available and inexpensive ketohexose D-Fructose at the C-4 position via an oxidation/reduction (Dess-Martin periodinane/NaBH4) was a key step in the synthesis. Overall, fully protected natural d-tagatose (3.21 g) was prepared from D-Fructose (9 g) on a 50 mmol scale in 23% overall yield, after five steps and two chromatographic purifications. d-[UL-13C6]Tagatose (92 mg) was prepared from d-[UL-13C6]fructose (465 mg, 2.5 mmol) in 16% overall yield after six steps and four chromatographic purifications.