Dansyl glutathione (DNS-glutathione)
(Synonyms: DNS-glutathione) 目录号 : GC30114Dansyl glutathione (DNS-glutathione) 是一种捕获剂,用于定量评估和鉴定反应性代谢物。
Cas No.:75017-02-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Dansyl glutathione is a trapping agent for the quantitative estimation and identification of reactive metabolites.
Dansyl glutathione is used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH[1].
[1]. Gan J, et al. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation. Chem Res Toxicol. 2009 Apr;22(4):690-8.
Cas No. | 75017-02-6 | SDF | |
别名 | DNS-glutathione | ||
Canonical SMILES | CN(C)C1=CC=CC2=C1C=CC=C2S(=O)(N[C@@H](CCC(N[C@@H](CS)C(NCC(O)=O)=O)=O)C(O)=O)=O | ||
分子式 | C22H28N4O8S2 | 分子量 | 540.61 |
溶解度 | DMSO : 100 mg/mL (184.98 mM; Need ultrasonic); H2O : 50 mg/mL (92.49 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.8498 mL | 9.2488 mL | 18.4976 mL |
5 mM | 0.37 mL | 1.8498 mL | 3.6995 mL |
10 mM | 0.185 mL | 0.9249 mL | 1.8498 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites
Chem Res Toxicol 2005 May;18(5):896-903.15892584 10.1021/tx0496791
A sensitive and quantitative method was developed for the estimation of reactive metabolite formation in vitro. The method utilizes reduced glutathione (GSH) labeled with a fluorescence tag as a trapping agent and fluorescent detection for quantitation. The derivatization of GSH was accomplished by reaction of oxidized glutathione (GSSG) with dansyl chloride to form dansylated GSSG. Subsequent reduction of the disulfide bond yielded dansylated GSH (dGSH). Test compounds were incubated with human liver microsomes in the presence of dGSH and NADPH, and the resulting mixtures were analyzed by HPLC coupled with a fluorescence detector and a mass spectrometer for the quantitation and mass determination of the resulting dGSH adducts. The comparative chemical reactivity of dGSH vs GSH was investigated by monitoring the reaction of each with 1-chloro-2,4-dinitrobenzene or R-(+)-pulegone after bioactivation. dGSH was found to be equivalent to GSH in chemical reactivity toward both thiol reactive molecules. dGSH did not serve as a cofactor for glutathione S-transferase (GST)-mediated conjugation of 3,4-dichloronitrobenzene in incubations with either human liver S9 fractions or a recombinant GST, GSTM1-1. Reference compounds were tested in this assay, including seven compounds that have been reported to form GSH adducts along with seven drugs that are among the most prescribed in the current U.S. market and have not been reported to form GSH adducts. dGSH adducts were detected and quantitated in incubations with all seven positive reference compounds; however, there were no dGSH adducts observed with any of the widely prescribed drugs. In comparison with existing methods, this method is sensitive, quantitative, cost effective, and easy to implement.
Impacts of diphenylamine NSAID halogenation on bioactivation risks
Toxicology 2021 Jun 30;458:152832.34107285 PMC8513111
Diphenylamine NSAIDs are highly prescribed therapeutics for chronic pain despite causing symptomatic hepatotoxicity through mitochondrial damage in five percent of patients taking them. Differences in toxicity are attributed to structural modifications to the diphenylamine scaffold rather than its inherent toxicity. We hypothesize that marketed diphenylamine NSAID substituents affect preference and efficiency of bioactivation pathways and clearance. We parsed the FDA DILIrank hepatotoxicity database and modeled marketed drug bioactivation into quinone-species metabolites to identify a family of seven clinically relevant diphenylamine NSAIDs. These drugs fell into two subgroups, i.e., acetic acid and propionic acid diphenylamines, varying in hepatotoxicity risks and modeled bioactivation propensities. We carried out steady-state kinetic studies to assess bioactivation pathways by trapping quinone-species metabolites with Dansyl glutathione. Analysis of the glutathione adducts by mass spectrometry characterized structures while dansyl fluorescence provided quantitative yields for their formation. Resulting kinetics identified four possible bioactivation pathways among the drugs, but reaction preference and efficiency depended upon structural modifications to the diphenylamine scaffold. Strikingly, diphenylamine dihalogenation promotes formation of quinone metabolites through four distinct metabolic pathways with high efficiency, whereas those without aromatic halogen atoms were metabolized less efficiently through two or fewer metabolic pathways. Overall metabolism of the drugs was comparable with bioactivation accounting for 4-13% of clearance. Lastly, we calculated daily bioload exposure of quinone-species metabolites based on bioactivation efficiency, bioavailability, and maximal daily dose. The results revealed stratification into the two subgroups; propionic acid diphenylamines had an average four-fold greater daily bioload compared to acetic acid diphenylamines. However, the lack of sufficient study on the hepatotoxicity for all drugs prevents further correlative analyses. These findings provide critical insights on the impact of diphenylamine bioactivation as a precursor to hepatotoxicity and thus, provide a foundation for better risk assessment in drug discovery and development.
Development of fluorescent-labeled trapping reagents based on cysteine to detect soft and hard electrophilic reactive metabolites
Drug Metab Pharmacokinet 2021 Aug;39:100386.34091122 10.1016/j.dmpk.2021.100386
Trapping assays are conducted at lead optimization stages to detect reactive metabolites (RMs) that can contribute to drug toxicity. The commonly used Dansyl glutathione (dGSH) provides a sensitive analysis owing to the fluorescent label, however, it captures only soft electrophilic RMs. TRs for hard electrophilic RMs, few of which are labeled fluorescently, can detect hard electrophilic aldehydes only by forming unstable imine derivatives. In this study, we aimed to develop novel fluorescently labeled TRs that detect both soft and hard electrophilic RMs and form stable ring structures with aldehydes. We designed four dansylated TRs based on cysteine, which has both soft and hard nucleophilic groups. To evaluate the reactivity of the TRs, we incubated them with several substrates and found that one of the TRs (CysGlu-Dan) detected all the soft and hard electrophilic RMs. We also examined the inhibition potential of each TR for seven major CYPs involved in drug metabolism and found that CysGlu-Dan showed an inhibitory profile similar to that of dGSH. In conclusion, CysGlu-Dan can be used to evaluate the risk of RMs in drug discovery.
Troglitazone thiol adduct formation in human liver microsomes: enzyme kinetics and reaction phenotyping
Drug Metab Lett 2008 Aug;2(3):184-9.19356091 10.2174/187231208785425773
Troglitazone (TGZ) induced hepatotoxicity has been linked to cytochrome P450 (CYP)-catalyzed reactive metabolite formation. Therefore, the kinetics and CYP specificity of reactive metabolite formation were studied using Dansyl glutathione (dGSH) as a trapping agent after incubation of TGZ with human liver microsomes (HLM) and recombinant human CYP proteins. CYP2C8 exhibited the highest rate of TGZ adduct (TGZ-dGS) formation, followed by CYP3A4, CYP3A5, and CYP2C19. The involvement of CYP2C8 and CYP3A4 was confirmed with CYP form-selective chemical inhibitors. The impact of TGZ concentration on the rate of TGZ-dGS formation was also evaluated. In this instance, two distinctly different profiles were observed with recombinant CYP3A4 and CYP2C8. It is concluded that both CYP3A4/5 and CYP2C8 play a major role in the formation of TGZ adduct in HLM. However, the contribution of these CYPs varies depending on their relative expression and the concentration of TGZ.
Increase in covalent binding of 5-hydroxydiclofenac to hepatic tissues in rats co-treated with lipopolysaccharide and diclofenac: involvement in the onset of diclofenac-induced idiosyncratic hepatotoxicity
J Toxicol Sci 2012;37(6):1143-56.23208430 10.2131/jts.37.1143
Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is well known to induce idiosyncratic hepatotoxicity. Although there remains much to be elucidated about its onset mechanism, it is widely accepted as a hypothesis that idiosyncratic hepatotoxicity arises from a specific immune response to a hapten formed by covalent binding of drugs or their reactive metabolites to hepatic tissues. In this study, we investigated the effects of covalent binding of DCF reactive metabolites to hepatic tissues using a rat model of liver injury induced by co-treatment with lipopolysaccharide (LPS) at a non-hepatotoxic dose. In studies done in vitro using hepatic microsomes prepared from rats treated with LPS alone, 4'- and 5-hydroxylation activities on DCF metabolism and adducts of reactive metabolites to Dansyl glutathione (dGSH) were markedly decreased associated with a decrease in total P450 content. However, in studies done in vivo, the LPS/DCF co-treatment significantly increased adducts of 5-hydroxydiclofenac (5-OH-DCF) to rat hepatic tissues and delayed the elimination of 5-OH-DCF from plasma. Furthermore, we investigated the effects of co-treatment on hepatic GSH level in rats. A decrease of hepatic GSH was observed with the LPS/DCF co-treatment but not with LPS or DCF alone. The results suggest that covalent binding of reactive metabolites via 5-OH-DCF to hepatic tissues may play an important role in the onset of DCF-induced idiosyncratic hepatotoxicity, especially under decreased GSH conditions.