DBCO-acid
(Synonyms: 11,12-二氢-Γ-氧代-二苯并[[F]偶氮-5-(6H)-丁酸) 目录号 : GC39242DBCO-acid 是一种可降解 (cleavable) ADC linker,可用于合成 ADC linker DBCO-NHS ester ,及偶联物 DBCO-PEG-MMAE 。
Cas No.:1353016-70-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
DBCO-acid is a cleavable ADC linker used in the synthesis of ADC linker DBCO-NHS ester , and drug-linker conjugates DBCO-PEG-MMAE [1].
[1]. Zimmerman ES, et al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem. 2014 Feb 19;25(2):351-61.
Cas No. | 1353016-70-2 | SDF | |
别名 | 11,12-二氢-Γ-氧代-二苯并[[F]偶氮-5-(6H)-丁酸 | ||
Canonical SMILES | O=C(CCC(O)=O)N(C1)C2=C(C=CC=C2)C#CC3=C1C=CC=C3 | ||
分子式 | C19H15NO3 | 分子量 | 305.33 |
溶解度 | DMSO: 100 mg/mL (327.51 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.2751 mL | 16.3757 mL | 32.7514 mL |
5 mM | 0.655 mL | 3.2751 mL | 6.5503 mL |
10 mM | 0.3275 mL | 1.6376 mL | 3.2751 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Site-Specific Surface Functionalization via Microchannel Cantilever Spotting (µCS): Comparison between Azide-Alkyne and Thiol-Alkyne Click Chemistry Reactions
Small 2018 May;14(21):e1800131.PMID:29682874DOI:10.1002/smll.201800131
Different types of click chemistry reactions are proposed and used for the functionalization of surfaces and materials, and covalent attachment of organic molecules. In the present work, two different catalyst-free click approaches, namely azide-alkyne and thiol-alkyne click chemistry are studied and compared for the immobilization of microarrays of azide or thiol inks on functionalized glass surfaces. For this purpose, the surface of glass is first functionalized with dibenzocyclooctyne-acid (DBCO-acid), a cyclooctyne with a carboxyl group. Then, the DBCO-terminated surfaces are functionalized via microchannel cantilever spotting with different fluorescent and nonfluorescent azide and thiol inks. Although both routes work reliably for surface functionalization, the protein binding experiments reveal that using a thiol-alkyne route will obtain the highest surface density of molecular immobilization in such spotting approaches. The obtained achievements and results from this work can be used for design and manufacturing of microscale patterns suitable for biomedical and biological applications.