DBO-83
目录号 : GC43383An agonist of nAChRs
Cas No.:195211-53-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
DBO-83 is an agonist of nicotinic acetylcholine receptors (nAChRs) with antinociceptive and anti-amnesic activities. It binds to nAChRs in rat cortical membranes with a Ki value of 4.1 nM in a radioligand binding assay with the α4β2 nAChR partial agonist and α7 nAChR agonist [3H]cytisine. DBO-83 dose-dependently increases the latency to paw licking in mice in the hot plate test and reduces the number of abdominal constrictions in mice in the acetic acid abdominal constriction test, effects that can be reduced by the nAChR antagonist mecamylamine . DBO-83 also dose-dependently prevents amnesia induced by mecamylamine, the muscarinic receptor antagonist scopolamine, and the nAChR antagonist dihydro-β-erythroidine in mice in the passive avoidance test.
Cas No. | 195211-53-1 | SDF | |
Canonical SMILES | ClC1=CC=C(N2CC(N3)CCC3C2)N=N1.Cl.Cl | ||
分子式 | C10H13ClN4•2HCl | 分子量 | 297.6 |
溶解度 | Water: 38 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.3602 mL | 16.8011 mL | 33.6022 mL |
5 mM | 0.672 mL | 3.3602 mL | 6.7204 mL |
10 mM | 0.336 mL | 1.6801 mL | 3.3602 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control
Expert Opin Investig Drugs 2001 Oct;10(10):1819-30.PMID:11772288DOI:10.1517/13543784.10.10.1819
Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.