Home>>Lipids>> Fatty Acids>>Decanoic Acid methyl ester

Decanoic Acid methyl ester Sale

(Synonyms: 癸酸甲酯) 目录号 : GC41313

An esterified form of decanoic acid

Decanoic Acid methyl ester Chemical Structure

Cas No.:110-42-9

规格 价格 库存 购买数量
50g
¥652.00
现货
100g
¥1,113.00
现货
250g
¥2,278.00
现货
500g
¥4,232.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Decanoic acid methyl ester is an ester form of decanoic acid . It has been studied as a single component biodiesel surrogate.

Chemical Properties

Cas No. 110-42-9 SDF
别名 癸酸甲酯
Canonical SMILES COC(CCCCCCCCC)=O
分子式 C11H22O2 分子量 186.3
溶解度 DMF: 25 mg/ml,DMF:PBS(pH 7.2)(1:1): 0.25 mg/ml,DMSO: 10 mg/ml,Ethanol: 25 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.3677 mL 26.8384 mL 53.6769 mL
5 mM 1.0735 mL 5.3677 mL 10.7354 mL
10 mM 0.5368 mL 2.6838 mL 5.3677 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

[Chemical constituents of Lepidium meyenii]

Zhongguo Zhong Yao Za Zhi 2015 Dec;40(23):4531-5.PMID:27141659doi

To study the chemical constituents of Lepidium meyenii, the air-dried rhizome of L. meyenii was extracted with 70% EtOH. The extract was condensed to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography, and identified based on spectral analyses (1H-NMR, 13C-NMR, HRESIMS). Eighteen compounds were isolated from L. meyenii, including 7 alkaloids and 4 fatty acids and 7 other compounds. They were characterized as (3-hydroxybenzyl) carbamic acid(1), phenylmethanamine(2), N-benzylformamide (3), N-benzylacetamide (4), pyridin-4-ylmethanamine(5), n-(4-methoxybenzyl) aniline(6), uracil(7), succininc acid(8), decanedioic acid(9), n-hexa- Decanoic Acid methyl ester(10), heptanoic acid(11), solerole(12), pyromucic acid methyl ester(13), 5-hydroxymethyl-2-furancar- boxadehyde(14), 5-(methoxymethyl)-1H-pyrrole-2-carbaldehyde(15), 1,7-dihydroxy-2,3, 4-trimethoxyxanthone (16), 1,7-di- hydroxy-3,4- dimethoxy-xanthone(17), (+)-pinoresinol(18). Meanwhile, compounds 1-18 were obtained from L. neyenii for the first time.

Antioxidant and Anticholinesterase Activities of Macrosphyra Longistyla (DC) Hiern Relevant in the Management of Alzheimer's Disease

Antioxidants (Basel) 2019 Sep 16;8(9):400.PMID:31527476DOI:10.3390/antiox8090400.

Macrosphyra longistyla has been used in many traditional systems of medicine for its anti-hemorrhagic, antidiabetic, anti-ulcer, and anti-diarrhea properties. The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitions of the crude methanol extracts and its various partitioned fractions were determined by a modified method of Ellman. An evaluation of the antioxidant activity was carried out using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging, ferric reducing power, and nitric oxide scavenging assays. The total flavonoids were estimated based on the aluminum chloride method, while the total tannins and phenolics were estimated based on the vanillin-HCl and Folin-Ciocalteu method, respectively. The ethyl acetate fraction had the highest DPPH radical scavenging activity, and the highest ferric reducing power with a concentration providing 50% inhibition (IC50) of 0.079 mg/mL and 0.078 mg/mL, respectively, while the crude methanol extract had the highest nitric oxide scavenging activity with an IC50 of 0.008 mg/mL. The methanol extract had the highest phenolics and flavonoids contents, while the aqueous fraction had the highest tannin content. The crude methanol extract had the best AChE and BuChE inhibitory action, with an IC50 of 0.556 µg/mL and 5.541 µg/mL, respectively, suggesting that the plant had a better AChE inhibiting potential. A moderate correlation was observed between the phenolic content and DPPH radical scavenging, NO radical scavenging, and AChE inhibitory activities (r2 = 0.439, 0.430, and 0.439, respectively), while a high correlation was seen between the flavonoid content and these activities (r2 = 0.695, 0.724, and 0.730, respectively), and the ferric reducing antioxidant power correlated highly with the proautocyanidin content (r2 = 0.801). Gas chromatography mass spectrometry (GCMS) revealed Decanoic Acid methyl ester (24.303%), 11,14-eicosadienoic acid methyl ester (16.788%), linoelaidic acid (10.444%), pentadecanoic acid (9.300%), and 2-methyl-hexadecanal (9.285%). Therefore, we suggest that M. longistyla contain bioactive chemicals, and could be a good alternative for the management of Alzheimer's and other neurodegenerative diseases.