Home>>Signaling Pathways>> Cell Cycle/Checkpoint>> Microtubule/Tubulin>>Deoxybrevianamide E

Deoxybrevianamide E Sale

目录号 : GC41304

A fungal metabolite

Deoxybrevianamide E Chemical Structure

Cas No.:34610-68-9

规格 价格 库存 购买数量
1mg
¥2,209.00
现货
5mg
¥10,502.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Deoxybrevianamide E is an alkaloid fungal metabolite that has been found in Aspergillus. It is a precursor in the biosynthesis of notoamides.

Chemical Properties

Cas No. 34610-68-9 SDF
Canonical SMILES O=C([C@@]1([H])N2CCC1)N[C@@H](CC3=C(C(C)(C)C=C)NC4=C3C=CC=C4)C2=O
分子式 C21H25N3O2 分子量 351.4
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8458 mL 14.2288 mL 28.4576 mL
5 mM 0.5692 mL 2.8458 mL 5.6915 mL
10 mM 0.2846 mL 1.4229 mL 2.8458 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Study on the biosynthesis of the notoamides: Pinacol-type rearrangement of the isoprenyl unit in Deoxybrevianamide E and 6-hydroxydeoxybrevianamide E

Tetrahedron Lett 2011 Dec 21;52(51):6923-6926.PMID:22140281DOI:10.1016/j.tetlet.2011.10.065.

Two reverse-prenylated indole alkaloids, Deoxybrevianamide E and 6-hydroxydeoxybrevianamide E, are proposed as biosynthetic precursors for advanced metabolites isolated from the marine-derived Aspergillus sp. In order to uncover the role of the alkaloids in the biosynthetic pathway, the feeding experiments of the [(13)C](2)-[(15)N]-labeled Deoxybrevianamide E and 6-hydroxydeoxybrevianamide E were performed to afford the metabolites, which were produced by oxidation and successive pinacol-type rearrangement of the isoprenyl units.

Chemical Composition of Aspergillus creber Extract and Evaluation of its Antimicrobial and Antioxidant Activities

Pol J Microbiol 2019 Sep;68(3):309-316.PMID:31880876DOI:10.33073/pjm-2019-033.

Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: asperlactone, emodin, sterigmatocystin, Deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds. Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: asperlactone, emodin, sterigmatocystin, Deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds.

The anti-TMV potency of the tobacco-derived fungus Aspergillus versicolor and its active alkaloids, as anti-TMV activity inhibitors

Phytochemistry 2023 Jan;205:113485.PMID:36334789DOI:10.1016/j.phytochem.2022.113485.

Nicotiana tabacum (tobacco) has attracted interest as one of the most economically important industrial crops widely cultivated in China, whose dried leaves are popularly consumed medicinally and recreationally by human societies. In this study, five undescribed alkaloids derivatives, isoaspergillines A-E, together with eight known alkaloids, notoamide D, (1R,4S)-4-benzyl-1-isopropyl-2,4-dihydro-1H-pyrazino-[2,1-b]quinazoline-3,6-dione, protuboxepin K, notoamide C, notoamide M, Deoxybrevianamide E, cyclo (D-Pro-L-Trp), and versicolamide B, were obtained from the culture of the Nicotiana tabacum-derived fungus Aspergillus versicolor. Their structures were mainly elucidated through comprehensive analyses of spectroscopic data. Bioactivity evaluation of all isolated compounds revealed that isoaspergilline A and notoamide M exhibited anti-TMV activities with IC50 values of 20.0 and 22.8 μM, respectively. Molecular docking suggested that isoaspergilline A and notoamide M were well located into the active site of anti-TMV by interacting with SER138, SER143, and ASN73 residues. This study enlightens the therapeutic potential of the endophytic fungus A. versicolor and it is helpful to find undescribed anti-TMV activity inhibitors, as well as searching for new anti-TMV candidates from natural sources.