Desmethyl Erlotinib
(Synonyms: 2-[[4-[(3-乙炔基苯基)氨基]-7-(2-甲氧基乙氧基)-6-喹唑啉基]氧基]乙醇,OSI-420 free base; CP-373420) 目录号 : GC43419A metabolite of erlotinib
Cas No.:183321-86-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Desmethyl erlotinib is a metabolite of erlotinib . Erlotinib is a tyrosine kinase inhibitor which acts on the epidermal growth factor receptor (EGFR), inhibiting EGFR-associated kinase activity (IC50 = 2.5 µM). This inhibits tumor growth in human head and neck carcinoma HN5 tumor xenografts in mice with an ED50 value of 9 mg/kg. Erlotinib also suppresses cyclin-dependent kinase 2 (Cdk2) activity in breast cancer cells (IC50 = 4.6 µM) and JAK2 mutant JAK2V617F positive hematopoietic progenitor cells (IC50 = 5 µM), which is associated with polycythemia vera, idiopathic myelofibrosis, and essential thrombocythemia. Formulations containing erlotinib have been used to treat certain forms of cancer, including non-small cell lung cancer.
Cas No. | 183321-86-0 | SDF | |
别名 | 2-[[4-[(3-乙炔基苯基)氨基]-7-(2-甲氧基乙氧基)-6-喹唑啉基]氧基]乙醇,OSI-420 free base; CP-373420 | ||
Canonical SMILES | C#CC1=CC(NC2=NC=NC3=CC(OCCOC)=C(OCCO)C=C32)=CC=C1 | ||
分子式 | C21H21N3O4 | 分子量 | 379.4 |
溶解度 | DMF: 50 mg/ml,DMF:PBS (pH 7.2) (1:9): 0.1 mg/ml,DMSO: 25 mg/ml,Ethanol: 0.25 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.6357 mL | 13.1787 mL | 26.3574 mL |
5 mM | 0.5271 mL | 2.6357 mL | 5.2715 mL |
10 mM | 0.2636 mL | 1.3179 mL | 2.6357 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Simultaneous Determination of Celecoxib, Erlotinib, and its Metabolite Desmethyl-Erlotinib (OSI-420) in Rat Plasma by Liquid chromatography/Tandem Mass Spectrometry with Positive/Negative Ion-Switching Electrospray Ionisation
Sci Pharm 2012 Jul-Sep;80(3):633-46.PMID:23008811DOI:10.3797/scipharm.1205-09.
A new method for the simultaneous determination of celecoxib, erlotinib, and its active metabolite desmethyl-erlotinib (OSI-420) in rat plasma, by liquid chromatography/tandem mass spectrometry with positive/negative ion-switching electrospray ionization mode, was developed and validated. Protein precipitation with methanol was selected as the method for preparing the samples. The analytes were separated on a reverse-phase C(18) column (50mm×4.6mm i.d., 3μ) using methanol: 2 mM ammonium acetate buffer, and pH 4.0 as the mobile phase at a flow rate 0.8 mL/min. Sitagliptin and Efervirenz were used as the internal standards for quantification. The determination was carried out on a Theremo Finnigan Quantam ultra triple-quadrupole mass spectrometer, operated in selected reaction monitoring (SRM) mode using the following transitions monitored simultaneously: positive m/z 394.5→278.1 for erlotinib, m/z 380.3→278.1 for Desmethyl Erlotinib (OSI-420), and negative m/z -380.1→ -316.3 for celecoxib. The limits of quantification (LOQs) were 1.5 ng/mL for Celecoxib, erlotinib, and OSI-420. Within- and between-day accuracy and precision of the validated method were within the acceptable limits of < 15% at all concentrations. The quantitation method was successfully applied for the simultaneous estimation of celecoxib, erlotinib, and Desmethyl Erlotinib in a pharmacokinetic study in Wistar rats.
Tyrosine kinase inhibitor conjugated quantum dots for non-small cell lung cancer (NSCLC) treatment
Eur J Pharm Sci 2019 May 15;133:145-159.PMID:30946965DOI:10.1016/j.ejps.2019.03.026.
Non-small cell lung cancer is a major sub-type of lung cancer that is associated with a poor diagnosis resulting in poor therapy for the disorder. In order to achieve a better prognosis, innovative multi-functional systems need to be developed which will aide in diagnosis as well as therapy for the disorder. One such multi-functional delivery system fabricated is Quantum Dots (QDs). QDs are photo-luminescent inorganic nanoparticles utilized for tumor detection, preclinically. Erlotinib hydrochloride, a tyrosine kinase inhibitor, is a first-generation drug developed to treat NSCLC. Its active metabolite, Desmethyl Erlotinib (OSI-420), exhibits similar anticancer activity as erlotinib. OSI-420 was conjugated to QDs to fabricate a delivery system and was then characterized by FT-IR, H NMR, UV-VIS, particle size, zeta potential, fluorescence spectroscopy and TEM. Drug loading was estimated using UV-VIS spectroscopy (52.2 ± 7.5%). A concentration-dependent release of OSI-420 was achieved using esterase enzymes, which was further confirmed using LC-MS. A cellular uptake study revealed the internalization potential of QDs and QD-OSI 420. A cellular recovery study was performed to confirm the internalization potential. Cell viability studies revealed that QD-OSI 420 conjugates had significantly better efficacy than pure drugs in all tested cell lines. QD conjugated OSI-420 demonstrated an IC60 of 2.5 μM in erlotinib-resistant A549 cell lines, where erlotinib or OSI-420 alone could not exhibit 60% inhibition when evaluated up to 20 μM. Similar cytotoxic enhancement of erlotinib was seen with QD-OSI 420 in other NSCLC cell lines as well. These results were strengthened by 3D-SCC model of A549 which revealed that QD-OSI 420 was significantly better in reducing in-vitro 3D tumor volume, as compared to pure drugs. This study, being one of its kind, explores the feasibility of conjugating OSI-420 with QDs as an alternative to traditional anti-cancer therapy, by improving intracellular drug delivery.