Dihydrotetrabenazine
(Synonyms: 反式(2,3)-二氢丁苯那嗪) 目录号 : GC40143An active metabolite of tetrabenazine
Cas No.:3466-75-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Dihydrotetrabenazine is an active metabolite of the vesicular monoamine transporter 2 (VMAT2) inhibitor tetrabenazine that is generated by hepatic carbonyl reductases. Dihydrotetrabenazine binds to mouse pons medulla, hypothalamus, and striatum (Kds = 2.72, 2.28, and 2.4 nM, respectively) and inhibits synaptic vesicular serotonin (5-HT) uptake (IC50s = 2.2, 2.8, and 2.3 nM, respectively). It also binds to human caudate nucleus, hippocampus, and substantia nigra pars compacta (Kds = 2.9, 2.5, and 2.8 nM, respectively). Dihydrotetrabenazine stereoisomers bind to VMAT2 in rat striatum.
Cas No. | 3466-75-9 | SDF | |
别名 | 反式(2,3)-二氢丁苯那嗪 | ||
Canonical SMILES | OC1C(CC(C)C)CN2C(C(C=C(OC)C(OC)=C3)=C3CC2)C1 | ||
分子式 | C19H29NO3 | 分子量 | 319.4 |
溶解度 | Chloroform: soluble,Methanol: soluble | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.1309 mL | 15.6544 mL | 31.3087 mL |
5 mM | 0.6262 mL | 3.1309 mL | 6.2617 mL |
10 mM | 0.3131 mL | 1.5654 mL | 3.1309 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
[11C]Dihydrotetrabenazine Positron Emission Tomography in Manganese-Exposed Workers
J Occup Environ Med 2020 Oct;62(10):788-794.PMID:32472844DOI:10.1097/JOM.0000000000001915.
Objective: To understand the neurotoxic effects of manganese (Mn) exposure on monoaminergic function, utilizing [C]Dihydrotetrabenazine (DTBZ) positron emission tomography (PET) to measure vesicular monoamine transporter 2 (VMAT2). Methods: Basal ganglia and thalamic DTBZ binding potentials (BPND) were calculated on 56 PETs from 41 Mn-exposed workers. Associations between cumulative Mn exposure, regional BPND, and parkinsonism were examined by mixed linear regression. Results: Thalamic DTBZ BPND was inversely associated with exposure in workers with less than 3 mg Mn/m-yrs, but subsequently remained stable. Pallidal DTBZ binding increased in workers with less than 2 mg Mn/m-yrs of exposure, but decreased thereafter. Thalamic DTBZ binding was inversely associated with parkinsonism (P = 0.003). Conclusion: Mn-dose-dependent associations with thalamic and pallidal DTBZ binding indicate direct effects on monoaminergic VMAT2. Thalamic DTBZ binding was also associated with parkinsonism, suggesting potential as an early biomarker of Mn neurotoxicity.
Synthesis and analysis of Dihydrotetrabenazine derivatives as novel vesicular monoamine transporter 2 inhibitors
Eur J Med Chem 2021 Nov 15;224:113718.PMID:34329999DOI:10.1016/j.ejmech.2021.113718.
Vesicular monoamine transporter 2 (VMAT2) is essential for synaptic transmission of all biogenic amines in the brain including serotonin, norepinephrine, histamine, and dopamine (DA). Given its crucial role in the neurophysiology and pharmacology of the central nervous system, VMAT2 is recognized as an important therapeutic target for various neurological disorders such as tardive dyskinesia (TD). Here, a novel series of Dihydrotetrabenazine derivative analogs were designed and synthesized to evaluate their effects on [3H]Dihydrotetrabenazine (DTBZ) binding and [3H]DA uptake at VMAT2. Of these analogs, compound 13e showed a high binding affinity for VMAT2 (IC50 = 5.13 ± 0.16 nM) with excellent inhibition of [3H]DA uptake (IC50 = 6.04 ± 0.03 nM) in striatal synaptosomes. In human liver microsomes, 13e was more stable (T1/2 = 161.2 min) than other reported VMAT2 inhibitors such as DTBZ (T1/2 = 119.5 min). In addition, 13e effectively inhibited the spontaneous locomotor activity (percent inhibition at 3 μmol/kg = 64.7%) in Sprague-Dawley rats. Taken together, our results indicate that 13e might be a promising lead compound for the development of novel treatments of TD.
Dihydrotetrabenazine binding and monoamine uptake in mouse brain regions
J Neurochem 1986 Aug;47(2):331-9.PMID:3734781DOI:10.1111/j.1471-4159.1986.tb04506.x.
Binding of [2-3H]Dihydrotetrabenazine and uptake of 5-hydroxytryptamine (serotonin) were studied in mouse brain cerebellum, pons-medulla, frontal cortex, hypothalamus, hippocampus, and striatum. Binding of [2-3H]Dihydrotetrabenazine to homogenates of these brain areas is stable for several hours and occurs at a homogeneous class of binding sites (KD = 2.4 nM). Subcellular fractionation and regional distribution of [2-3H]Dihydrotetrabenazine binding and serotonin uptake showed that the ligand binds to synaptic vesicles. Dihydrotetrabenazine inhibited serotonin uptake with the same inhibitory constant (IC50 = 2.6 nM) for synaptic vesicles from brain regions containing 3,4-dihydroxyphenylethylamine (dopamine) or serotonin and noradrenaline in different proportions. This constant is similar to the KD of [2-3H]Dihydrotetrabenazine, which suggests that the latter ligand labels specifically and with the same affinity the monoamine transporter from various monoaminergic synaptic vesicles. Therefore the regional differences in central monoamine depletion induced in vivo by tetrabenazine are not due to regional differences in inhibition of vesicular monoamine uptake. Moreover, vesicular monoamine transporters from the central and peripheral nervous systems of various mammals and from bovine adrenal glands have comparable affinity for substrate and inhibitor (Km values for serotonin and IC50 for Dihydrotetrabenazine are about 0.8 microM and 3 nM, respectively) and comparable turnover number (10-35 molecules transported per transporter per minute), which suggests the involvement of a common transporter molecule in the process of monoamine uptake by the various monoaminergic storage vesicles.
[3H]Dihydrotetrabenazine, a new in vitro monoaminergic probe for human brain
J Neurochem 1988 Apr;50(4):1131-6.PMID:3346671DOI:10.1111/j.1471-4159.1988.tb10583.x.
The monoamine transporter of dopamine (DA), noradrenaline, and 5-hydroxytryptamine synaptic vesicles was assayed in rat and human brain homogenates by in vitro binding of [3H]Dihydrotetrabenazine. [3H]Reserpine, a second ligand of the vesicular monoamine transporter, could not be used. [3H]Dihydrotetrabenazine binding in rat brain was stable after 72 h at 22 degrees C postmortem. In major human brain regions, [3H]Dihydrotetrabenazine binding was specific and saturable (KD, 2.7 nM). Displacement constants by substrates or inhibitors of vesicular monoamine uptake, and regional distribution in human brain were similar to those found in rodents. The highest densities of binding sites were observed in caudate nucleus, putamen, and accumbens nucleus. In caudate nucleus and in putamen from normal human subjects, [3H]Dihydrotetrabenazine binding and homovanillic acid concentration were significantly or nearly significantly correlated. A weaker correlation was found between [3H]Dihydrotetrabenazine binding and DA, in association with a higher variability of DA. [3H]Dihydrotetrabenazine binding in caudate nucleus and in putamen decreased significantly with age, unlike DA and homovanillic acid concentrations. The results establish [3H]Dihydrotetrabenazine as a presynaptic monoaminergic ligand of interest for studies on postmortem human brain.
Differences in Dihydrotetrabenazine Isomer Concentrations Following Administration of Tetrabenazine and Valbenazine
Drugs R D 2017 Sep;17(3):449-459.PMID:28776237DOI:10.1007/s40268-017-0202-z.
Background: Tetrabenazine (TBZ) activity is thought to result from four isomeric Dihydrotetrabenazine (HTBZ) metabolites ([+]-α-HTBZ, [-]-α-HTBZ, [+]-β-HTBZ, [-]-β-HTBZ). Each isomer has a unique profile of vesicular monoamine transporter 2 (VMAT2) inhibition and off-target binding. Previously published data only report total isomer (α) and (β) concentrations. We developed a method to quantify the individual HTBZ isomers in samples from patients with Huntington's disease receiving TBZ. For comparison, concentrations of [+]-α-HTBZ, the single active metabolite shared by valbenazine (VBZ) and TBZ, were determined in samples from patients with tardive dyskinesia receiving VBZ. Methods: A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitation of the four individual HTBZ isomers. Concentrations were determined in serum from patients with Huntington's disease administered TBZ and plasma from patients with tardive dyskinesia administered VBZ once daily. Results: In patients administered TBZ, [-]-α-HTBZ and [+]-β-HTBZ were the most abundant HTBZ isomers while [-]-β-HTBZ and [+]-α-HTBZ were present as minor metabolites. Only [+]-α-HTBZ was observed in patients administered VBZ. Conclusions: Based on relative abundance and potency, [+]-β-HTBZ appears to be the primary contributor to VMAT2 inhibition by TBZ, a finding in contrast with the generally held assertion that [+]-α-HTBZ is the major contributor. [-]-α-HTBZ, the other abundant TBZ metabolite, has much lower VMAT2 inhibitory potency than [+]-β-HTBZ, but increased affinity for other CNS targets, which may contribute to off-target effects of TBZ. In contrast, pharmacological activity for VBZ is derived primarily from [+]-α-HTBZ. Individual HTBZ isomer concentrations provide a more clinically relevant endpoint for assessing on- and off-target effects of TBZ than total isomer concentrations.