Docusate Sodium (Dioctyl sulfosuccinate sodium salt)
(Synonyms: 多库脂钠,Dioctyl sulfosuccinate sodium salt) 目录号 : GC30286A surfactant
Cas No.:577-11-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Docusate is a surfactant.1 It forms reverse micelles in oils and increases the solubility of water in oil by forming microemulsions. Docusate has been used in protein extraction, cryo-enzymology, the preparation of ceramic nanoparticles and gelatin-based nanopallets, and as a charge control agent in particle migration imaging.
1.De, T.K., and Maitra, A.Solution behaviour of aerosol OT in non-polar solventsAdv. Colloid Interfac.5995-193(1995)
Cas No. | 577-11-7 | SDF | |
别名 | 多库脂钠,Dioctyl sulfosuccinate sodium salt | ||
Canonical SMILES | O=C(OCC(CC)CCCC)C(S(=O)([O-])=O)CC(OCC(CC)CCCC)=O.[Na+] | ||
分子式 | C20H37NaO7S | 分子量 | 444.56 |
溶解度 | Water : ≥ 20 mg/mL (44.99 mM) | 储存条件 | Store at -20°C,protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.2494 mL | 11.2471 mL | 22.4942 mL |
5 mM | 0.4499 mL | 2.2494 mL | 4.4988 mL |
10 mM | 0.2249 mL | 1.1247 mL | 2.2494 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Parallel quantitation of salt dioctyl sodium sulfosuccinate (DOSS) and fingerprinting analysis of dispersed oil in aqueous samples
In many jurisdictions, dispersants are included in contingency plans as a viable countermeasure that can help reduce the overall environmental impact of marine oil spills. When used, it is imperative to monitor the progression of dispersant and oil to assess their environmental fate and behaviour. Amphiphilic salt dioctyl sodium sulfosuccinate (DOSS) is the major effective component of the most commonly available dispersants, such as Corexit? EC9500A. Without proper sample preparation, dispersed oil in water samples could interfere with the accurate analysis of DOSS and easily contaminate the LC-MS system. In this work, solid phase extraction (SPE) weak anion exchange (WAX) cartridges were used to separate oil and DOSS in aqueous samples. DOSS was accurately determined by liquid chromatography coupled with a high resolution Orbitrap mass spectrometer (LC-HRMS). Oil fingerprinting analysis was conducted and total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), and petroleum biomarkers were determined by gas chromatography-flame ionization detection (GC-FID) and mass spectrometry (GC-MS). This SPE-LC/GC-MS method was used for the analysis of oil-dispersant water samples containing a mixture of Corexit? EC9500A and a selection of crude oils and refined petroleum products. Nearly a 100% DOSS recovery was obtained for various oil-surfactant conditions. Parallel quantitation of oils with dispersants was achieved using this method. A portion of the TPH loss was possibly attributed to oil retained by the SPE column. Chemical fingerprints and diagnostic ratios of target compounds in recovered dispersed oil overall remain unchanged compared with those of all studied oils.
Ear drops for the removal of ear wax
Background: Ear wax (cerumen) is a normal bodily secretion that can become a problem when it obstructs the ear canal. Symptoms attributed to wax (such as deafness and pain) are among the commonest reasons for patients to present to primary care with ear trouble.Wax is part of the ear's self-cleaning mechanism and is usually naturally expelled from the ear canal without causing problems. When this mechanism fails, wax is retained in the canal and may become impacted; interventions to encourage its removal may then be needed. Application of ear drops is one of these methods. Liquids used to remove and soften wax are of several kinds: oil-based compounds (e.g. olive or almond oil); water-based compounds (e.g. sodium bicarbonate or water itself); a combination of the above or non-water, non-oil-based solutions, such as carbamide peroxide (a hydrogen peroxide-urea compound) and glycerol.
Objectives: To assess the effects of ear drops (or sprays) to remove or aid the removal of ear wax in adults and children.
Search methods: We searched the Cochrane ENT Trials Register; Cochrane Register of Studies; PubMed; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the most recent search was 23 March 2018.
Selection criteria: Randomised controlled trials (RCTs) in which a 'cerumenolytic' was compared with no treatment, water or saline, an alternative liquid treatment (oil or almond oil) or another 'cerumenolytic' in adults or children with obstructing or impacted ear wax.
Data collection and analysis: We used the standard methodological procedures expected by Cochrane. The primary outcomes were 1) the proportion of patients (or ears) with complete clearance of ear wax and 2) adverse effects (discomfort, irritation or pain). Secondary outcomes were: extent of wax clearance; proportion of people (or ears) with relief of symptoms due to wax; proportion of people (or ears) requiring further intervention to remove wax; success of mechanical removal of residual wax following treatment; any other adverse effects recorded and cost. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics.
Main results: We included 10 studies, with 623 participants (900 ears). Interventions included: oil-based treatments (triethanolamine polypeptide, almond oil, benzocaine, chlorobutanol), water-based treatments (docusate sodium, carbamide peroxide, phenazone, choline salicylate, urea peroxide, potassium carbonate), other active comparators (e.g. saline or water alone) and no treatment. Nine of the studies were more than 15 years old.The overall risk of bias across the 10 included studies was low or unclear.
Primary outcome: proportion of patients (or ears) with complete clearance of ear waxSix studies (360 participants; 491 ears) contributed quantitative data and were included in our meta-analyses.Active treatment versus no treatmentOnly one study addressed this comparison. The proportion of ears with complete clearance of ear wax was higher in the active treatment group (22%) compared with the no treatment group (5%) after five days of treatment (risk ratio (RR) 4.09, 95% confidence interval (CI) 1.00 to 16.80); one study; 117 ears; NNTB = 8) (low-quality evidence).Active treatment versus water or salineWe found no evidence of a difference in the proportion of patients (or ears) with complete clearance of ear wax when the active treatment group was compared to the water or saline group (RR 1.47, 95% CI 0.79 to 2.75; three studies; 213 participants; 257 ears) (low-quality evidence). Two studies applied drops for five days, but one study only applied the drops for 15 minutes. When we excluded this study in a sensitivity analysis it did not change the result.Water or saline versus no treatmentThis comparison was only addressed in the single study cited above (active versus no treatment) and there was no evidence of a difference in the proportion of ears with complete wax clearance when comparing water or saline with no treatment after five days of treatment (RR 4.00, 95% CI 0.91 to 17.62; one study; 76 ears) (low-quality evidence).Active treatment A versus active treatment BSeveral single studies evaluated 'head-to-head' comparisons between two active treatments. We found no evidence to show that one was superior to any other.Subgroup analysis of oil-based active treatments versus non-oil based active treatmentsWe found no evidence of a difference in this outcome when oil-based treatments were compared with non-oil-based active treatments.
Primary outcome: adverse effects: discomfort, irritation or painOnly seven studies planned to measure and did report this outcome. Only two (141 participants;176 ears) provided useable data. There was no evidence of a significant difference in the number of adverse effects between the types of ear drops in these two studies. We summarised the remaining five studies narratively. All events were mild and reported in fewer than 30 participants across the seven studies (low-quality evidence).Secondary outcomesThree studies reported 'other' adverse effects (how many studies planned to report these is unclear). The available information was limited and included occasional reports of dizziness, unpleasant smell, tinnitus and hearing loss. No significant differences between groups were reported. There were no emergencies or serious adverse effects reported in any of the 10 studies.There was very limited or no information available on our remaining secondary outcomes.
Authors' conclusions: Although a number of studies aimed to evaluate whether or not one type of cerumenolytic is more effective than another, there is no high-quality evidence to allow a firm conclusion to be drawn and the answer remains uncertain.A single study suggests that applying ear drops for five days may result in a greater likelihood of complete wax clearance than no treatment at all. However, we cannot conclude whether one type of active treatment is more effective than another and there was no evidence of a difference in efficacy between oil-based and water-based active treatments.There is no evidence to show that using saline or water alone is better or worse than commercially produced cerumenolytics. Equally, there is also no evidence to show that using saline or water alone is better than no treatment.
Molecular dynamics simulation study of the association of lidocainium docusate and its derivatives in aqueous solution
Ionic liquid active pharmaceutical ingredients (IL APIs) are novel materials in which the ions themselves are APIs, but the pure salt is a liquid under ambient conditions. It has been found that IL APIs can have superior performance relative to their conventional salt analogues, but the mechanism for this is unclear. We have used molecular simulations to estimate the aqueous phase association constants of the IL API lidocainium docusate and their sodium and chloride counterparts. Lidocainium is the cationic form of lidocaine, a local anesthetic, while the docusate anion is an emollient. From strongest to weakest, the calculated association constants are 10.1 M(-1) (lidocainium docusate); 0.77 M(-1) (sodium chloride); 0.086 M(-1) (sodium docusate); and 0.065 M(-1) (lidocainium chloride). These results suggest that the experimentally observed enhanced efficacy of lidocainium docusate relative to the traditional drug formulation as a lidocaine hydrochloride salt could result from association of the ions in aqueous solution and at the cell membrane, leading to a synergistic activity effect.
Sodium Docusate Surface-Modified Dispersible and Powder Zinc Peroxide Formulation: An Adsorbent for the Effective and Fast Removal of Crystal Violet Dye, an Emerging Wastewater Contaminant
Crystal violet (CV) dye is one of the most toxic dyes majorly generated by textile industries. It may cause health issues if enters human beings. A lot of research has been reported for the removal of CV dye from wastewater; however, most of them are time-consuming and hardly remove more than 95% of the CV dye. In the last few years, we have tested several materials, and most of them have exhibited very low efficacy toward adsorption of CV including zinc peroxide (ZnO2). To enhance adsorption efficacy, dispersibility, and stability, the surfaces of several reported materials were modified using different wetting agents and nonionic surfactants. Interestingly, ZnO2, which was earlier very less effective after surface modification by sodium salt of dioctyl sulfosuccinate, efficiently adsorbed >99.5% of CV from contaminated water within 5 min of contact time at pH ?10. The adsorption capacity obtained for the sodium docusate surface-modified zinc peroxide (ZnSD) adsorbent was found to be 123 mg/g, which is much better than the other reported for CV removal. Different physiochemical experiment parameters like pH, contact time, initial dye concentration, adsorbent dosages, and temperature were optimum to achieve maximum adsorption of the CV dye. The adsorption rate and adsorption mechanism studies show that the adsorption of CV follows pseudo-second-order kinematics and the Freundlich isotherm model. The adsorption results are consistent, and even treated water can be reutilized for various applications.
Analysis of interfacial and micellar behavior of sodium dioctyl sulphosuccinate salt (AOT) with zwitterionic surfactants in aqueous media
The interfacial and bulk properties of mixtures of the anionic surfactant (dioctyl sulphosuccinate sodium salt, AOT) with zwitterionic surfactants 3-(N,N-dimethyldodecylammonio) propane sulfonate (DPS), 3-(N,N-dimethyltetradecylammonio) propane sulfonate (TPS), 3-(N,N-dimethylhexadecylammonio) propane sulfonate (HPS) have been studied employing surface tension, fluorescence, and viscometric techniques in aqueous media at 25 °C. It is observed that these mixtures exhibit synergism and these synergistic interactions increase with the enhancement of the hydrocarbon chain of the zwitterionic surfactant. The various physicochemical properties such as critical micelle concentration (cmc), surface excess concentration (Г(max)), minimum area per molecule (A(min)), aggregation number (N(agg)), interaction parameters (β(σ), β(m)), and thermodynamic parameters such as standard Gibbs free energy of adsorption (ΔG(ads)(o)), excess free energy of micellization (ΔG(ex)), and standard Gibbs free energy of micellization (ΔG(m)(o)) have been evaluated. The negative values of ΔG(m)(o) and ΔG(ads)(o) show that the micelle formation and adsorption of surfactant at the air/solution interface is energetically favorable, while a negative value of ΔG(ex) ensures stability of the mixed micelles formed. The Regular Solution Approximation, Motomura and Rosen's approaches have been used to explain and compare the results. The packing parameter (p) ensures the formation of vesicles or bilayers for AOT+DPS/TPS mixtures, which can potentially be used as delivery agents for industrial applications.