Home>>Signaling Pathways>> Others>> Others>>Dodecylphosphocholine

Dodecylphosphocholine Sale

(Synonyms: FOS-维生素B-12) 目录号 : GC43561

A detergent

Dodecylphosphocholine Chemical Structure

Cas No.:29557-51-5

规格 价格 库存 购买数量
250mg
¥1,062.00
现货
500mg
¥2,021.00
现货
1g
¥3,820.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Dodecylphosphocholine is a detergent that is commonly used for membrane protein structure determination using NMR. It has also been used to generate membrane mimetic micelles and to characterize pore formation by the influenza M2 transmembrane domain within a synthetic membrane. Dodecylphosphocholine micelles induce amyloid fibril formation by the prion protein (PrP) β-strand (PrP (110-136)). Dodecylphosphocholine has a critical micelle concentration (CMC) of approximately 1.5 mM.

Chemical Properties

Cas No. 29557-51-5 SDF
别名 FOS-维生素B-12
Canonical SMILES C[N+](C)(C)CCOP(OCCCCCCCCCCCC)([O-])=O
分子式 C17H38NO4P 分子量 351.5
溶解度 DMF: 16 mg/ml,DMSO: 16 mg/ml,Ethanol: 15 mg/ml,PBS (pH 7.2): 25 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.845 mL 14.2248 mL 28.4495 mL
5 mM 0.569 mL 2.845 mL 5.6899 mL
10 mM 0.2845 mL 1.4225 mL 2.845 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Biophysical characterization of full-length oleosin in Dodecylphosphocholine micelles

Proteins 2022 Feb;90(2):560-565.PMID:34596903DOI:10.1002/prot.26252.

Oleosin is a hydrophobic protein that punctuates the surface of plant seed lipid droplets, which are 20 nm-100 μm entities that serve as reservoirs for high-energy metabolites. Oleosin is purported to stabilize lipid droplets, but its exact mechanism of stabilization has not been established. Probing the structure of oleosin directly in lipid droplets is challenging due to the size of lipid droplets and their high degree of light scattering. Therefore, a medium in which the native structure of oleosin is retained, but is also amenable to spectroscopic studies is needed. Here, we show, using a suite of biophysical techniques, that Dodecylphosphocholine micelles appear to support the tertiary structure of the oleosin protein (i.e., hairpin conformation) and render the protein in an oligomeric state that is amenable to more sophisticated biophysical techniques such as NMR.

Dodecylphosphocholine Micelles Induce Amyloid Formation of the PrP(110-136) Peptide via an α-Helical Metastable Conformation

PLoS One 2016 Dec 8;11(12):e0168021.PMID:27930722DOI:10.1371/journal.pone.0168021.

A peptide encompassing the conserved hydrophobic region and the first β-strand of the prion protein (PrP(110-136)) shown to interact with the surface of Dodecylphosphocholine micelles adopts an α-helical conformation that is localized below the head-group layer. This surface-bound peptide has a half-life of one day, and readily initiates the formation of amyloid fibrils. The presence of the latter was confirmed using birefringence microscopy upon Congo red binding and thioflavin T-binding induced fluorescence. The observation of this metastable α-helical conformer provides a unique snapshot of the early steps of the inter-conversion pathway. These findings together with the body of evidence from the prion literature allowed us to propose a mechanism for the conversion of PrPC to amyloid material.

NMR Structure and Localization of the Host Defense Peptide ThanatinM21F in Zwitterionic Dodecylphosphocholine Micelle: Implications in Antimicrobial and Hemolytic Activity

J Membr Biol 2022 Jun;255(2-3):151-160.PMID:35257227DOI:10.1007/s00232-022-00223-3.

Non-hemolytic antimicrobial peptides (AMPs) are vital lead molecules for the designing and development of peptide-based antibiotics. Thanatin a 21-amino acid long single disulfide bonded AMP is known to be highly non-hemolytic with a limited toxicity to human cells and model animals. Thanatin demonstrates a potent antibacterial activity against multidrug-resistant Gram-negative pathogens. A single mutated variant of thanatin replaced last residue Met21 to Phe or thanatin M21F has recently been found to be more active compared to the native peptide. In order to gain mechanistic insights toward bacterial cell lysis versus non-hemolysis, here, we report atomic resolution structure and mode insertion of thanatinM21F reconstituted into zwitterionic detergent micelle by use of solution NMR spectroscopy. The 3D structure of thanatinM21F in DPC micelle is defined by an anti-parallel β-sheet between residues I9-F21 with a central cationic loop, residues N12-R14. PRE NMR studies revealed hydrophobic core residues of thanatinM21F are deeply inserted in the DPC micelle, while residues at the extended N-terminal half of the peptide are appeared to be mostly surface localized. Marked structural differences of thanatin and thanatinM21F in negatively charged LPS and DPC micelle could be correlated with non-hemolytic and antibacterial activity.

Mitochondrial ADP/ATP Carrier in Dodecylphosphocholine Binds Cardiolipins with Non-native Affinity

Biophys J 2017 Dec 5;113(11):2311-2315.PMID:29056231DOI:10.1016/j.bpj.2017.09.019.

Biophysical investigation of membrane proteins generally requires their extraction from native sources using detergents, a step that can lead, possibly irreversibly, to protein denaturation. The propensity of Dodecylphosphocholine (DPC), a detergent widely utilized in NMR studies of membrane proteins, to distort their structure has been the subject of much controversy. It has been recently proposed that the binding specificity of the yeast mitochondrial ADP/ATP carrier (yAAC3) toward cardiolipins is preserved in DPC, thereby suggesting that DPC is a suitable environment in which to study membrane proteins. In this communication, we used all-atom molecular dynamics simulations to investigate the specific binding of cardiolipins to yAAC3. Our data demonstrate that the interaction interface observed in a native-like environment differs markedly from that inferred from an NMR investigation in DPC, implying that in this detergent, the protein structure is distorted. We further investigated yAAC3 solubilized in DPC and in the milder dodecylmaltoside with thermal-shift assays. The loss of thermal transition observed in DPC confirms that the protein is no longer properly folded in this environment.

Three-Dimensional Structure of the Antimicrobial Peptide Cecropin P1 in Dodecylphosphocholine Micelles and the Role of the C-Terminal Residues

ACS Omega 2022 Sep 2;7(36):31924-31934.PMID:36120057DOI:10.1021/acsomega.2c02778.

Cecropin P1 (CP1) isolated from a large roundworm Ascaris suum, which is found in pig intestines, has been extensively studied as a model antimicrobial peptide (AMP). However, despite being a model AMP, its antibacterial mechanism is not well understood, particularly the function of its C-terminus. By using an Escherichia coli overexpression system with calmodulin as a fusion partner, we succeeded in the mass expression of recombinant peptides, avoiding toxicity to the host and degradation of CP1. The structure of the recombinant 15N- and 13C-labeled CP1 and its C-terminus truncated analogue in Dodecylphosphocholine (DPC) micelles was determined by NMR. In this membrane-mimetic environment, CP1 formed an α-helix for almost its entire length, except for a short region at the C-terminus, and there was no evidence of a hinge, which is considered important for the expression of activity in other cecropins. Several NMR analyses showed that the entire length of CP1 was protected from water by micelles. Since the loss of the C-terminus of the analogue had little effect on the NMR structure or its interaction with the micelle, we investigated another role of the C-terminus of CP1 in its antimicrobial activity. The results showed that the C-terminal region affected the DNA-binding capacity of CP1, and this mechanism of action was also newly suggested that it contributed to the antimicrobial activity of CP1.