Dolasetron Mesylate (MDL-73147EF)
(Synonyms: 甲磺酸多拉司琼,MDL-73147EF) 目录号 : GC30413A 5-HT3 receptor antagonist
Cas No.:115956-13-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Dolasetron is an antagonist of the serotonin (5-HT) receptor subtype 5-HT3 (Ki = 20 nM).1 It is selective for 5-HT3 receptors over 5-HT1A, 5-HT1B, 5-HT2, dopamine D2, α1-, α2-, β-adrenergic, M1-5 muscarinic acetylcholine, and neurokinin-1 (NK1) receptors (IC50s = >10 ?M for all).2 Dolasetron inhibits 5-HT-induced membrane currents in NG 108-15 cells (IC50 = 3.8 nM).1 It increases the latency to emesis and reduces the number of vomiting and retching episodes induced by cisplatin in ferrets when administered at doses of 0.5 or 2 mg/kg.2 Formulations containing dolasetron have been used in the prevention of postoperative or chemotherapy-induced nausea.
1.Beoijinga, P.H., Galvan, M., Baron, B.M., et al.Characterization of the novel 5-HT3 antagonists MDL 73147EF (dolasetron mesilate) and MDL 74156 in NG108-15 neuroblastoma x glioma cellsEur. J. Pharmacol.219(1)9-13(1992) 2.Miller, R.C., Galvan, M., Gittos, M.W., et al.Pharmacological properties of dolasetron, a potent and selective antagonist at 5-HT3 receptorsDrug Develop. Res.28(1)87-93(1993)
Cas No. | 115956-13-3 | SDF | |
别名 | 甲磺酸多拉司琼,MDL-73147EF | ||
Canonical SMILES | O=C(C1=CNC2=C1C=CC=C2)O[C@@H]3C[C@@](CC4C5)([H])[N@](CC4=O)[C@@]5([H])C3.O=S(C)(O)=O | ||
分子式 | C20H24N2O6S | 分子量 | 420.48 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.3782 mL | 11.8912 mL | 23.7823 mL |
5 mM | 0.4756 mL | 2.3782 mL | 4.7565 mL |
10 mM | 0.2378 mL | 1.1891 mL | 2.3782 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis
Background: Postoperative nausea and vomiting (PONV) is a common adverse effect of anaesthesia and surgery. Up to 80% of patients may be affected. These outcomes are a major cause of patient dissatisfaction and may lead to prolonged hospital stay and higher costs of care along with more severe complications. Many antiemetic drugs are available for prophylaxis. They have various mechanisms of action and side effects, but there is still uncertainty about which drugs are most effective with the fewest side effects. Objectives: ? To compare the efficacy and safety of different prophylactic pharmacologic interventions (antiemetic drugs) against no treatment, against placebo, or against each other (as monotherapy or combination prophylaxis) for prevention of postoperative nausea and vomiting in adults undergoing any type of surgery under general anaesthesia ? To generate a clinically useful ranking of antiemetic drugs (monotherapy and combination prophylaxis) based on efficacy and safety ? To identify the best dose or dose range of antiemetic drugs in terms of efficacy and safety SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), ClinicalTrials.gov, and reference lists of relevant systematic reviews. The first search was performed in November 2017 and was updated in April 2020. In the update of the search, 39 eligible studies were found that were not included in the analysis (listed as awaiting classification). Selection criteria: Randomized controlled trials (RCTs) comparing effectiveness or side effects of single antiemetic drugs in any dose or combination against each other or against an inactive control in adults undergoing any type of surgery under general anaesthesia. All antiemetic drugs belonged to one of the following substance classes: 5-HT? receptor antagonists, D? receptor antagonists, NK? receptor antagonists, corticosteroids, antihistamines, and anticholinergics. No language restrictions were applied. Abstract publications were excluded. Data collection and analysis: A review team of 11 authors independently assessed trials for inclusion and risk of bias and subsequently extracted data. We performed pair-wise meta-analyses for drugs of direct interest (amisulpride, aprepitant, casopitant, dexamethasone, dimenhydrinate, dolasetron, droperidol, fosaprepitant, granisetron, haloperidol, meclizine, methylprednisolone, metoclopramide, ondansetron, palonosetron, perphenazine, promethazine, ramosetron, rolapitant, scopolamine, and tropisetron) compared to placebo (inactive control). We performed network meta-analyses (NMAs) to estimate the relative effects and ranking (with placebo as reference) of all available single drugs and combinations. Primary outcomes were vomiting within 24 hours postoperatively, serious adverse events (SAEs), and any adverse event (AE). Secondary outcomes were drug class-specific side effects (e.g. headache), mortality, early and late vomiting, nausea, and complete response. We performed subgroup network meta-analysis with dose of drugs as a moderator variable using dose ranges based on previous consensus recommendations. We assessed certainty of evidence of NMA treatment effects for all primary outcomes and drug class-specific side effects according to GRADE (CINeMA, Confidence in Network Meta-Analysis). We restricted GRADE assessment to single drugs of direct interest compared to placebo. Main results: We included 585 studies (97,516 randomized participants). Most of these studies were small (median sample size of 100); they were published between 1965 and 2017 and were primarily conducted in Asia (51%), Europe (25%), and North America (16%). Mean age of the overall population was 42 years. Most participants were women (83%), had American Society of Anesthesiologists (ASA) physical status I and II (70%), received perioperative opioids (88%), and underwent gynaecologic (32%) or gastrointestinal surgery (19%) under general anaesthesia using volatile anaesthetics (88%). In this review, 44 single drugs and 51 drug combinations were compared. Most studies investigated only single drugs (72%) and included an inactive control arm (66%). The three most investigated single drugs in this review were ondansetron (246 studies), dexamethasone (120 studies), and droperidol (97 studies). Almost all studies (89%) reported at least one efficacy outcome relevant for this review. However, only 56% reported at least one relevant safety outcome. Altogether, 157 studies (27%) were assessed as having overall low risk of bias, 101 studies (17%) overall high risk of bias, and 327 studies (56%) overall unclear risk of bias. Vomiting within 24 hours postoperatively Relative effects from NMA for vomiting within 24 hours (282 RCTs, 50,812 participants, 28 single drugs, and 36 drug combinations) suggest that 29 out of 36 drug combinations and 10 out of 28 single drugs showed a clinically important benefit (defined as the upper end of the 95% confidence interval (CI) below a risk ratio (RR) of 0.8) compared to placebo. Combinations of drugs were generally more effective than single drugs in preventing vomiting. However, single NK? receptor antagonists showed treatment effects similar to most of the drug combinations. High-certainty evidence suggests that the following single drugs reduce vomiting (ordered by decreasing efficacy): aprepitant (RR 0.26, 95% CI 0.18 to 0.38, high certainty, rank 3/28 of single drugs); ramosetron (RR 0.44, 95% CI 0.32 to 0.59, high certainty, rank 5/28); granisetron (RR 0.45, 95% CI 0.38 to 0.54, high certainty, rank 6/28); dexamethasone (RR 0.51, 95% CI 0.44 to 0.57, high certainty, rank 8/28); and ondansetron (RR 0.55, 95% CI 0.51 to 0.60, high certainty, rank 13/28). Moderate-certainty evidence suggests that the following single drugs probably reduce vomiting: fosaprepitant (RR 0.06, 95% CI 0.02 to 0.21, moderate certainty, rank 1/28) and droperidol (RR 0.61, 95% CI 0.54 to 0.69, moderate certainty, rank 20/28). Recommended and high doses of granisetron, dexamethasone, ondansetron, and droperidol showed clinically important benefit, but low doses showed no clinically important benefit. Aprepitant was used mainly at high doses, ramosetron at recommended doses, and fosaprepitant at doses of 150 mg (with no dose recommendation available). Frequency of SAEs Twenty-eight RCTs were included in the NMA for SAEs (10,766 participants, 13 single drugs, and eight drug combinations). The certainty of evidence for SAEs when using one of the best and most reliable anti-vomiting drugs (aprepitant, ramosetron, granisetron, dexamethasone, ondansetron, and droperidol compared to placebo) ranged from very low to low. Droperidol (RR 0.88, 95% CI 0.08 to 9.71, low certainty, rank 6/13) may reduce SAEs. We are uncertain about the effects of aprepitant (RR 1.39, 95% CI 0.26 to 7.36, very low certainty, rank 11/13), ramosetron (RR 0.89, 95% CI 0.05 to 15.74, very low certainty, rank 7/13), granisetron (RR 1.21, 95% CI 0.11 to 13.15, very low certainty, rank 10/13), dexamethasone (RR 1.16, 95% CI 0.28 to 4.85, very low certainty, rank 9/13), and ondansetron (RR 1.62, 95% CI 0.32 to 8.10, very low certainty, rank 12/13). No studies reporting SAEs were available for fosaprepitant. Frequency of any AE Sixty-one RCTs were included in the NMA for any AE (19,423 participants, 15 single drugs, and 11 drug combinations). The certainty of evidence for any AE when using one of the best and most reliable anti-vomiting drugs (aprepitant, ramosetron, granisetron, dexamethasone, ondansetron, and droperidol compared to placebo) ranged from very low to moderate. Granisetron (RR 0.92, 95% CI 0.80 to 1.05, moderate certainty, rank 7/15) probably has no or little effect on any AE. Dexamethasone (RR 0.77, 95% CI 0.55 to 1.08, low certainty, rank 2/15) and droperidol (RR 0.89, 95% CI 0.81 to 0.98, low certainty, rank 6/15) may reduce any AE. Ondansetron (RR 0.95, 95% CI 0.88 to 1.01, low certainty, rank 9/15) may have little or no effect on any AE. We are uncertain about the effects of aprepitant (RR 0.87, 95% CI 0.78 to 0.97, very low certainty, rank 3/15) and ramosetron (RR 1.00, 95% CI 0.65 to 1.54, very low certainty, rank 11/15) on any AE. No studies reporting any AE were available for fosaprepitant. Class-specific side effects For class-specific side effects (headache, constipation, wound infection, extrapyramidal symptoms, sedation, arrhythmia, and QT prolongation) of relevant substances, the certainty of evidence for the best and most reliable anti-vomiting drugs mostly ranged from very low to low. Exceptions were that ondansetron probably increases headache (RR 1.16, 95% CI 1.06 to 1.28, moderate certainty, rank 18/23) and probably reduces sedation (RR 0.87, 95% CI 0.79 to 0.96, moderate certainty, rank 5/24) compared to placebo. The latter effect is limited to recommended and high doses of ondansetron. Droperidol probably reduces headache (RR 0.76, 95% CI 0.67 to 0.86, moderate certainty, rank 5/23) compared to placebo. We have high-certainty evidence that dexamethasone (RR 1.00, 95% CI 0.91 to 1.09, high certainty, rank 16/24) has no effect on sedation compared to placebo. No studies assessed substance class-specific side effects for fosaprepitant. Direction and magnitude of network effect estimates together with level of evidence certainty are graphically summarized for all pre-defined GRADE-relevant outcomes and all drugs of direct interest compared to placebo in http://doi.org/10.5281/zenodo.4066353. Authors' conclusions: We found high-certainty evidence that five single drugs (aprepitant, ramosetron, granisetron, dexamethasone, and ondansetron) reduce vomiting, and moderate-certainty evidence that two other single drugs (fosaprepitant and droperidol) probably reduce vomiting, compared to placebo. Four of the six substance classes (5-HT? receptor antagonists, D? receptor antagonists, NK? receptor antagonists, and corticosteroids) were thus represented by at least one drug with important benefit for prevention of vomiting. Combinations of drugs were generally more effective than the corresponding single drugs in preventing vomiting. NK? receptor antagonists were the most effective drug class and had comparable efficacy to most of the drug combinations. 5-HT? receptor antagonists were the best studied substance class. For most of the single drugs of direct interest, we found only very low to low certainty evidence for safety outcomes such as occurrence of SAEs, any AE, and substance class-specific side effects. Recommended and high doses of granisetron, dexamethasone, ondansetron, and droperidol were more effective than low doses for prevention of vomiting. Dose dependency of side effects was rarely found due to the limited number of studies, except for the less sedating effect of recommended and high doses of ondansetron. The results of the review are transferable mainly to patients at higher risk of nausea and vomiting (i.e. healthy women undergoing inhalational anaesthesia and receiving perioperative opioids). Overall study quality was limited, but certainty assessments of effect estimates consider this limitation. No further efficacy studies are needed as there is evidence of moderate to high certainty for seven single drugs with relevant benefit for prevention of vomiting. However, additional studies are needed to investigate potential side effects of these drugs and to examine higher-risk patient populations (e.g. individuals with diabetes and heart disease).
Dolasetron
Little information is available on the use of dolasetron during breastfeeding. Until more data become available, dolasetron should be used with caution during breastfeeding. An alternate drug may be preferred.
Antiemetics for adults for prevention of nausea and vomiting caused by moderately or highly emetogenic chemotherapy: a network meta-analysis
Background: About 70% to 80% of adults with cancer experience chemotherapy-induced nausea and vomiting (CINV). CINV remains one of the most distressing symptoms associated with cancer therapy and is associated with decreased adherence to chemotherapy. Combining 5-hydroxytryptamine-3 (5-HT?) receptor antagonists with corticosteroids or additionally with neurokinin-1 (NK?) receptor antagonists is effective in preventing CINV among adults receiving highly emetogenic chemotherapy (HEC) or moderately emetogenic chemotherapy (MEC). Various treatment options are available, but direct head-to-head comparisons do not allow comparison of all treatments versus another. OBJECTIVES: ? In adults with solid cancer or haematological malignancy receiving HEC - To compare the effects of antiemetic treatment combinations including NK? receptor antagonists, 5-HT? receptor antagonists, and corticosteroids on prevention of acute phase (Day 1), delayed phase (Days 2 to 5), and overall (Days 1 to 5) chemotherapy-induced nausea and vomiting in network meta-analysis (NMA) - To generate a clinically meaningful treatment ranking according to treatment safety and efficacy ? In adults with solid cancer or haematological malignancy receiving MEC - To compare whether antiemetic treatment combinations including NK? receptor antagonists, 5-HT? receptor antagonists, and corticosteroids are superior for prevention of acute phase (Day 1), delayed phase (Days 2 to 5), and overall (Days 1 to 5) chemotherapy-induced nausea and vomiting to treatment combinations including 5-HT? receptor antagonists and corticosteroids solely, in network meta-analysis - To generate a clinically meaningful treatment ranking according to treatment safety and efficacy SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, conference proceedings, and study registries from 1988 to February 2021 for randomised controlled trials (RCTs).
Selection criteria: We included RCTs including adults with any cancer receiving HEC or MEC (according to the latest definition) and comparing combination therapies of NK? and 5-HT? inhibitors and corticosteroids for prevention of CINV.
Data collection and analysis: We used standard methodological procedures expected by Cochrane. We expressed treatment effects as risk ratios (RRs). Prioritised outcomes were complete control of vomiting during delayed and overall phases, complete control of nausea during the overall phase, quality of life, serious adverse events (SAEs), and on-study mortality. We assessed GRADE and developed 12 'Summary of findings' tables. We report results of most crucial outcomes in the abstract, that is, complete control of vomiting during the overall phase and SAEs. For a comprehensive illustration of results, we randomly chose aprepitant plus granisetron as exemplary reference treatment for HEC, and granisetron as exemplary reference treatment for MEC.
Main results: Highly emetogenic chemotherapy (HEC) We included 73 studies reporting on 25,275 participants and comparing 14 treatment combinations with NK? and 5-HT? inhibitors. All treatment combinations included corticosteroids. Complete control of vomiting during the overall phase We estimated that 704 of 1000 participants achieve complete control of vomiting in the overall treatment phase (one to five days) when treated with aprepitant + granisetron. Evidence from NMA (39 RCTs, 21,642 participants; 12 treatment combinations with NK? and 5-HT? inhibitors) suggests that the following drug combinations are more efficacious than aprepitant + granisetron for completely controlling vomiting during the overall treatment phase (one to five days): fosnetupitant + palonosetron (810 of 1000; RR 1.15, 95% confidence interval (CI) 0.97 to 1.37; moderate certainty), aprepitant + palonosetron (753 of 1000; RR 1.07, 95% CI 1.98 to 1.18; low-certainty), aprepitant + ramosetron (753 of 1000; RR 1.07, 95% CI 0.95 to 1.21; low certainty), and fosaprepitant + palonosetron (746 of 1000; RR 1.06, 95% CI 0.96 to 1.19; low certainty). Netupitant + palonosetron (704 of 1000; RR 1.00, 95% CI 0.93 to 1.08; high-certainty) and fosaprepitant + granisetron (697 of 1000; RR 0.99, 95% CI 0.93 to 1.06; high-certainty) have little to no impact on complete control of vomiting during the overall treatment phase (one to five days) when compared to aprepitant + granisetron, respectively. Evidence further suggests that the following drug combinations are less efficacious than aprepitant + granisetron in completely controlling vomiting during the overall treatment phase (one to five days) (ordered by decreasing efficacy): aprepitant + ondansetron (676 of 1000; RR 0.96, 95% CI 0.88 to 1.05; low certainty), fosaprepitant + ondansetron (662 of 1000; RR 0.94, 95% CI 0.85 to 1.04; low certainty), casopitant + ondansetron (634 of 1000; RR 0.90, 95% CI 0.79 to 1.03; low certainty), rolapitant + granisetron (627 of 1000; RR 0.89, 95% CI 0.78 to 1.01; moderate certainty), and rolapitant + ondansetron (598 of 1000; RR 0.85, 95% CI 0.65 to 1.12; low certainty). We could not include two treatment combinations (ezlopitant + granisetron, aprepitant + tropisetron) in NMA for this outcome because of missing direct comparisons. Serious adverse events We estimated that 35 of 1000 participants experience any SAEs when treated with aprepitant + granisetron. Evidence from NMA (23 RCTs, 16,065 participants; 11 treatment combinations) suggests that fewer participants may experience SAEs when treated with the following drug combinations than with aprepitant + granisetron: fosaprepitant + ondansetron (8 of 1000; RR 0.23, 95% CI 0.05 to 1.07; low certainty), casopitant + ondansetron (8 of 1000; RR 0.24, 95% CI 0.04 to 1.39; low certainty), netupitant + palonosetron (9 of 1000; RR 0.27, 95% CI 0.05 to 1.58; low certainty), fosaprepitant + granisetron (13 of 1000; RR 0.37, 95% CI 0.09 to 1.50; low certainty), and rolapitant + granisetron (20 of 1000; RR 0.57, 95% CI 0.19 to 1.70; low certainty). Evidence is very uncertain about the effects of aprepitant + ondansetron (8 of 1000; RR 0.22, 95% CI 0.04 to 1.14; very low certainty), aprepitant + ramosetron (11 of 1000; RR 0.31, 95% CI 0.05 to 1.90; very low certainty), fosaprepitant + palonosetron (12 of 1000; RR 0.35, 95% CI 0.04 to 2.95; very low certainty), fosnetupitant + palonosetron (13 of 1000; RR 0.36, 95% CI 0.06 to 2.16; very low certainty), and aprepitant + palonosetron (17 of 1000; RR 0.48, 95% CI 0.05 to 4.78; very low certainty) on the risk of SAEs when compared to aprepitant + granisetron, respectively. We could not include three treatment combinations (ezlopitant + granisetron, aprepitant + tropisetron, rolapitant + ondansetron) in NMA for this outcome because of missing direct comparisons. Moderately emetogenic chemotherapy (MEC) We included 38 studies reporting on 12,038 participants and comparing 15 treatment combinations with NK? and 5-HT? inhibitors, or 5-HT? inhibitors solely. All treatment combinations included corticosteroids. Complete control of vomiting during the overall phase We estimated that 555 of 1000 participants achieve complete control of vomiting in the overall treatment phase (one to five days) when treated with granisetron. Evidence from NMA (22 RCTs, 7800 participants; 11 treatment combinations) suggests that the following drug combinations are more efficacious than granisetron in completely controlling vomiting during the overall treatment phase (one to five days): aprepitant + palonosetron (716 of 1000; RR 1.29, 95% CI 1.00 to 1.66; low certainty), netupitant + palonosetron (694 of 1000; RR 1.25, 95% CI 0.92 to 1.70; low certainty), and rolapitant + granisetron (660 of 1000; RR 1.19, 95% CI 1.06 to 1.33; high certainty). Palonosetron (588 of 1000; RR 1.06, 95% CI 0.85 to 1.32; low certainty) and aprepitant + granisetron (577 of 1000; RR 1.06, 95% CI 0.85 to 1.32; low certainty) may or may not increase complete response in the overall treatment phase (one to five days) when compared to granisetron, respectively. Azasetron (560 of 1000; RR 1.01, 95% CI 0.76 to 1.34; low certainty) may result in little to no difference in complete response in the overall treatment phase (one to five days) when compared to granisetron. Evidence further suggests that the following drug combinations are less efficacious than granisetron in completely controlling vomiting during the overall treatment phase (one to five days) (ordered by decreasing efficacy): fosaprepitant + ondansetron (500 of 100; RR 0.90, 95% CI 0.66 to 1.22; low certainty), aprepitant + ondansetron (477 of 1000; RR 0.86, 95% CI 0.64 to 1.17; low certainty), casopitant + ondansetron (461 of 1000; RR 0.83, 95% CI 0.62 to 1.12; low certainty), and ondansetron (433 of 1000; RR 0.78, 95% CI 0.59 to 1.04; low certainty). We could not include five treatment combinations (fosaprepitant + granisetron, azasetron, dolasetron, ramosetron, tropisetron) in NMA for this outcome because of missing direct comparisons. Serious adverse events We estimated that 153 of 1000 participants experience any SAEs when treated with granisetron. Evidence from pair-wise comparison (1 RCT, 1344 participants) suggests that more participants may experience SAEs when treated with rolapitant + granisetron (176 of 1000; RR 1.15, 95% CI 0.88 to 1.50; low certainty). NMA was not feasible for this outcome because of missing direct comparisons. Certainty of evidence Our main reason for downgrading was serious or very serious imprecision (e.g. due to wide 95% CIs crossing or including unity, few events leading to wide 95% CIs, or small information size). Additional reasons for downgrading some comparisons or whole networks were serious study limitations due to high risk of bias or moderate inconsistency within networks.
Authors' conclusions: This field of supportive cancer care is very well researched. However, new drugs or drug combinations are continuously emerging and need to be systematically researched and assessed. For people receiving HEC, synthesised evidence does not suggest one superior treatment for prevention and control of chemotherapy-induced nausea and vomiting. For people receiving MEC, synthesised evidence does not suggest superiority for treatments including both NK? and 5-HT? inhibitors when compared to treatments including 5-HT? inhibitors only. Rather, the results of our NMA suggest that the choice of 5-HT? inhibitor may have an impact on treatment efficacy in preventing CINV. When interpreting the results of this systematic review, it is important for the reader to understand that NMAs are no substitute for direct head-to-head comparisons, and that results of our NMA do not necessarily rule out differences that could be clinically relevant for some individuals.
Characterization of the novel 5-HT3 antagonists MDL 73147EF (dolasetron mesilate) and MDL 74156 in NG108-15 neuroblastoma x glioma cells
In radioligand binding experiments, MDL 73147EF and MDL 74156 inhibited the binding of [3H]GR65630 to 5-hydroxy-tryptamine3 (5-HT3) binding sites on membranes prepared from NG108-15 neuroblastoma x glioma cells. The calculated dissociation constants (KI) were 20.03 +/- 6.58 and 0.44 +/- 0.18 nM, respectively (means +/- S.E.M., n = 6 and 9, respectively). Application of 5-HT (10-50 microM) to voltage-clamped NG108-15 cells elicited a rapidly desensitizing inward membrane current, characteristic for the activation of 5-HT3 receptors. The 5-HT-induced membrane current was suppressed in a reversible, concentration-dependent manner by MDL 73147EF and MDL 74156EF. The concentrations required to block half the 5-HT response (IC50) were 3.8 and 0.1 nM, respectively. It is concluded that both compounds are potent and reversible antagonists at 5-HT3 receptors in this neuroblastoma cell line.
Pharmacokinetics of the active metabolite (MDL 74,156) of dolasetron mesylate after oral or intravenous administration to anesthetized children
Background: Dolasetron mesylate is a selective 5-HT3 receptor antagonist under investigation as an antiemetic in children. Published studies indicate that its antiemetic activity results from the active metabolite (MDL 74,156), which is produced within 10 minutes of administration of dolasetron mesylate.
Methods: The pharmacokinetics of MDL 74,156 and the safety and tolerability of dolasetron mesylate were studied after a single oral or intravenous dose of 1.2 mg.kg-1 dolasetron mesylate to healthy children from 2 to 12 years of age. Oral dolasetron was administered to 12 children 1 to 2 hours before anesthesia. Intravenous dolasteron was administered to 18 children at induction of anesthesia. Serial blood samples were collected for 24 hours after dosing to measure the plasma concentration of MDL 74,156. Indexes of liver and kidney function were determined, and electrocardiograms and adverse events were recorded.