Home>>Natural Products>>(E)-3-(4-Methoxyphenyl)acrylic acid

(E)-3-(4-Methoxyphenyl)acrylic acid Sale

(Synonyms: (E)-3-(4-甲氧基苯基)丙烯酸) 目录号 : GC61692

(E)-3-(4-Methoxyphenyl)acrylicacid(compound3)可以从Arachishypogaea,ScrophulariabuergerianaMiquel,Aquilegiavulgaris,Anigozanthospreissii等中分离得到的。(E)-3-(4-Methoxyphenyl)acrylicacid有显着的肝保护活性,抗健忘,增强认知活性,降血糖和神经保护活性等作用。

(E)-3-(4-Methoxyphenyl)acrylic acid Chemical Structure

Cas No.:943-89-5

规格 价格 库存 购买数量
500 mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1].

[1]. Sirichan Tachai, et al. Uncommon secondary metabolites from Etlingera pavieana rhizomes. Nat Prod Res. 2016 Oct;30(19):2215-9.

Chemical Properties

Cas No. 943-89-5 SDF
别名 (E)-3-(4-甲氧基苯基)丙烯酸
Canonical SMILES O=C(O)/C=C/C1=CC=C(OC)C=C1
分子式 C10H10O3 分子量 178.18
溶解度 DMSO : 100 mg/mL (561.23 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.6123 mL 28.0615 mL 56.123 mL
5 mM 1.1225 mL 5.6123 mL 11.2246 mL
10 mM 0.5612 mL 2.8062 mL 5.6123 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Excited-State Properties of Metal-Free (( Z)-2-Cyano-3-(4-(( E)-2-(6-(4-methoxyphenyl)-9-octyl-9 H-carbazol-3-yl)vinyl)phenyl)acrylic Acid and ( E)-2-Cyano-3-(4-(( E)-4-(diphenylamino)styryl)phenyl)acrylic Acid) and Ru-Based (N719 and Z907) Dyes and Photoinduced Charge Transfer Processes in FTO/TiCl4/TiO2/Dye Photoanodes Fabricated by Conventional Staining and Potential-Assisted Adsorption

J Phys Chem A 2020 Jun 4;124(22):4333-4344.PMID:32394715DOI:10.1021/acs.jpca.0c00653.

Excited-state properties of two novel metal-free custom-made dyes D2d [(Z)-2-cyano-3-(4-((E)-2-(6-(4-methoxyphenyl)-9-octyl-9H-carbazol-3-yl)vinyl)phenyl)acrylic acid] and T-SB-C [(E)-2-cyano-3-(4-((E)-4-(diphenylamino)styryl)phenyl)acrylic acid] and two commercially available Ruthenium-based N719 and Z907 dyes were investigated with application of time-resolved absorption and emission. Singlet excited state lifetimes of D2d and T-SB-C were determined in acetonitrile and are 1.4 and 2.45 ns, respectively. The 3MLCT state lifetimes of N719 and Z907 dyes determined in methanol are 9.25 and 8.85 ns, respectively. Subsequently, photoexcited processes like electron injection and charge recombination were studied for those dyes adsorbed on the FTO/TiCl4/TiO2 photoanodes and fabricated via a conventional staining technique and innovative potential-assisted fast dye staining method. The dynamics of the spectro-temporal data was determined with application of single-wavelength and global fitting. All dye-TiO2 systems showed fast picosecond injection of excited electrons to the conduction band of the TiO2 layer and in complex multiphasic charge recombination processes. The dynamics of those processes is not altered by the dye adsorption method.

Cytotoxic Phenylpropanoid Derivatives and Alkaloids from the Flowers of Pancratium maritimum L

Plants (Basel) 2022 Feb 9;11(4):476.PMID:35214809DOI:10.3390/plants11040476.

Regarding our growing interest in identifying biologically active leads from Amaryllidaceous plants, the flowers of Pancratium maritimum L. (Amaryllidaceae) were investigated. Purification of the cytotoxic fractions of the alcoholic extract of the flowers gave a new glycoside, 3-[4-(β-D-glucopyranosyloxy)phenyl]-2-(Z)-propenoic acid methyl ester (1), together with the previously reported compounds 3-methoxy-4-(β-D-glucopyranosyloxy)benzoic acid methyl ester (2), 3-(4-methoxyphenyl)propan-1-ol-1-O-β-D-glucopyranoside (3), (E)-3-(4-hydroxyphenyl)acrylic acid methyl ester (4), caffeic acid (5), dihydrocaffeic acid methyl ester (6), and pancratistatin (7). Interestingly, compounds 1 and 2 are phenolic-O-glycosides, while the glucose moiety in 3 is attached to the propanol side chain. This is the first report about the existence of 1-6 in the genus Pancratium. Further, glycosides 1-3 from the Amaryllidaceae family are reported on here for the first time. The structures of 1-7 were determined by analyses of their 1D (1H and 13C) and 2D (COSY, HMQC, HMBC) NMR spectra, and by high-resolution mass spectral measurements. Pancratistatin displayed potent and selective growth inhibitory effects against MDA-MB-231, HeLa, and HCT 116 cells with an IC50 value down to 0.058 µM, while it possessed lower selectivity towards the normal human dermal fibroblasts with IC50 of 6.6 µM.

Synthesis and Investigation of Novel CHCA-Derived Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Lipids

Molecules 2022 Apr 15;27(8):2565.PMID:35458772DOI:10.3390/molecules27082565.

A significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances. We have taken this rational design one step further by developing and optimizing new MALDI matrices with a range of modifications on the CHCA core, involving different functionalities and substituents. Of particular interest was the understanding of the electron-withdrawing (E.g., nitro-) or donating (E.g., methoxy-) effects along with the extent of conjugation on the ionization efficiency. In the present work, ten matrices were designed on a reasonable basis, synthesized, and characterized by NMR and UV spectroscopies and laser desorption ionization. With the assistance of these putative MALDI matrices, samples containing phospholipids (PL), and neutral di-/tri-acylglycerols (DAG, TAG) were investigated using milk, fish, blood, and human plasma extracts. In comparison with CHCA and ClCCA, four of them, viz. [(2E,4E)-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienoic acid] (1), [(2E,4E)-2-cyano-5-(4-nitrophenyl)penta-2,4-dienoic acid] (2), [(E)-2-cyano-3-(6-methoxynaphthalen-2-yl)acrylic acid] (6) and [(E)-2-cyano-3-(naphthalen-2-yl)acrylic acid] (7) displayed good to even excellent performances as MALDI matrices in terms of ionization capability, interference-free spectra, S/N ratio, and reproducibility. Especially compound 7 (cyano naphthyl acrylic acid, CNAA) was the election matrix for PL analysis and matrix 2 (cyano nitrophenyl dienoic acid, CNDA) for neutral lipids such as DAG and TAG in positive ion mode.

Synthesis and evaluation of antiproliferative microtubule-destabilising combretastatin A-4 piperazine conjugates

Org Biomol Chem 2019 Jun 26;17(25):6184-6200.PMID:31173031DOI:10.1039/c9ob00558g.

Microtubules are a validated clinical target for the treatment of many cancers. We describe the design, synthesis, biochemical evaluation, and molecular modelling studies of a series of analogues of the microtubule-destabilising agent, combretastatin A-4 (CA-4). Our series of 33 novel compounds contain the CA-4 core structure with modifications to the stilbene linking group, and are predominantly piperazine derivatives. Synthesis was achieved in a two-step process by firstly obtaining the acrylic acid via a Perkin reaction using microwave enhanced synthesis, followed by coupling using either DCC or Mukaiyama's reagent. All target compounds were screened for antiproliferative activity in MCF-7 breast cancer cells. Hydroxyl derivative (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl) propenone (4m) displayed potent antiproliferative activity (IC50 = 190 nM). Two amino-containing derivatives, (E)-3-(3-amino-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4q) and (E)-3-(3-amino-4-methoxyphenyl)-1-(4-(p-tolyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4x), were the most potent with IC50 values of 130 nM and 83 nM respectively. Representative compounds were shown to depolymerise tubulin, induce G2/M arrest and apoptosis in MCF-7 cells but not peripheral blood mononuclear cells, and induce cleavage of the DNA repair enzyme poly ADP ribose polymerase (PARP) in MCF-7 cells. Modelling studies predict that the compounds bind to tubulin within the colchicine-binding site. These compounds are a valuable addition to the library of CA-4 analogues and 4m, 4q and 4x will be developed further as novel, water-soluble molecules targeting microtubules.

Novel resveratrol-based substrates for human hepatic, renal, and intestinal UDP-glucuronosyltransferases

Chem Res Toxicol 2014 Apr 21;27(4):536-45.PMID:24571610DOI:10.1021/tx400408x.

Trans-Resveratrol (tRes) has been shown to have powerful antioxidant, anti-inflammatory, anticarcinogenic, and antiaging properties; however, its use as a therapeutic agent is limited by its rapid metabolism into its conjugated forms by UDP-glucuronosyltransferases (UGTs). The aim of the current study was to test the hypothesis that the limited bioavailability of tRes can be improved by modifying its structure to create analogs which would be glucuronidated at a lower rate than tRes itself. In this work, three synthetic stilbenoids, (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (NI-12a), (E)-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde oxime (NI-ST-05), and (E)-4-(3,5-dimethoxystyryl)-2,6-dinitrophenol (DNR-1), have been designed based on the structure of tRes and synthesized in our laboratory. UGTs recognize and glucuronidate tRes at each of the 3 hydroxyl groups attached to its aromatic rings. Therefore, each of the above compounds was designed with the majority of the hydroxyl groups blocked by methylation and the addition of other novel functional groups as part of a drug optimization program. The activities of recombinant human UGTs from the 1A and 2B families were examined for their capacity to metabolize these compounds. Glucuronide formation was identified using HPLC and verified by β-glucuronidase hydrolysis and LC-MS/MS analysis. NI-12a was glucuronidated at both the -COOH and -OH functions, NI-ST-05 formed a novel N-O-glucuronide, and no product was observed for DNR-1. NI-12a is primarily metabolized by the hepatic and renal enzyme UGT1A9, whereas NI-ST-05 is primarily metabolized by an extrahepatic enzyme, UGT1A10, with apparent Km values of 240 and 6.2 μM, respectively. The involvement of hepatic and intestinal UGTs in the metabolism of both compounds was further confirmed using a panel of human liver and intestinal microsomes, and high individual variation in activity was demonstrated between donors. In summary, these studies clearly establish that modified, tRes-based stilbenoids may be preferable alternatives to tRes itself due to increased bioavailability via altered conjugation.