E-64-c
(Synonyms: 阿洛司他丁酸) 目录号 : GC16505An active metabolite of E-64d
Cas No.:76684-89-4
Sample solution is provided at 25 µL, 10mM.
E-64-c, which is also known as Ep-475, is an analog of E-64 and inhibitor of cysteine proteinases. [1]
The cysteine proteinases, of which Cathepsins B and H and cathepsin L exist in mammals, contain an essential highly reactive thiol group, and therefore are inhibited by thiol-blocking reagents such as iodoacetate and mercuribenzoate. E-64-c showed promise of acting as class-specific inhibitors for the cysteine proteinases. X-ray diffraction shows that E-64-c binds to papain through a thioether covalent bond.[1]
E-64-c, which is an analog of E-64, has proved to be substantially more reactive than E-64 with cathepsins B and L. Cathepsins B and H from human liver and rat cathepsin L were used to measure the rate constants of inhibition of E-64-c, which indicated the rate constants of inactivation of cathepsins B, H and L were 298000, 2018, 206000 M-1 s-1 , respectively[2].
E-64-c was injected subcutaneously, in various doses, daily for 80 days into dystrophic chickens, the activities of cathepsin B and cathepsin H were reduced to the levels in control chickens. E-64-c showed dose-dependent activities on inhibiting cathepsin H and B. However, cathepsin D is not sensitive to E-64-c. Moreover, 10 mg/kg per 8 h of an oil emulsion of E-64-c injection reduced protein degradation 20% in muscles from burned rats. E-64c, which also inhibits calpain , was administered at a dose of 400 mg/kg twice a day for 3 days to middle cerebral artery occlusion mice. The MAP2 levels was increased compared to control and the depletion was significantly inhibited.[3,4]
References:
1.Yamamoto D, Matsumoto K, Ohishi H, et al. Refined x-ray structure of papain. E-64-c complex at 2.1-A resolution[J]. Journal of Biological Chemistry, 1991, 266(22): 14771-14777.
2.Barrett A J, Kembhavi A A, Brown M A, et al. L-trans-Epoxysuccinyl-leucylamido (4-guanidino) butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L[J]. Biochem. J, 1982, 201: 189-198.
3.Clark A S, Kelly R A, Mitch W E. Systemic response to thermal injury in rats. Accelerated protein degradation and altered glucose utilization in muscle[J]. Journal of Clinical Investigation, 1984, 74(3): 888.
4.Inuzuka T, Tamura A, Sato S, et al. Suppressive effect of E-64c on ischemic degradation of cerebral proteins following occlusion of the middle cerebral artery in rats[J]. Brain research, 1990, 526(1): 177-179.
Cell experiment [1]: | |
Cell lines |
Neuronal chromaffin cells |
Preparation method |
The solubility of this compound in DMSO is > 10 mM. General tips for obtaining a higher concentration: Please warm the tube at 37 °C for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below - 20 °C for several months. |
Reacting condition |
10 μM |
Applications |
In neuronal chromaffin cells, E-64-c inhibited the production of the 12 ~ 14 kDa β-secretase product from APP. In addition, when tested in isolated, intact secretory vesicles, E-64-c reduced the production of Aβ (1 ~ 40). These results indicated an important role of E-64-c in β-secretase processing of APP in neuronal chromaffin cells. |
Animal experiment [2]: | |
Animal models |
Rat models of cerebral ischemia |
Dosage form |
400 mg/kg; i.p.; b.i.d, for 3 days |
Applications |
In rat models of cerebral ischemia, E-64-c significantly inhibited the ischemia-induced depletion of microtubule-associated protein 2 (MAP2). E-64-c increased MAP2 levels to 55 ± 25.7% of control levels (sham-operated rats used as controls). However, E-64-c showed no marked effect on the decrease of myelin-associated glycoprotein caused by ischemia. |
Other notes |
Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal. |
References: [1]. Hook VY, Reisine TD. Cysteine proteases are the major beta-secretase in the regulated secretory pathway that provides most of the beta-amyloid in Alzheimer's disease: role of BACE 1 in the constitutive secretory pathway. J Neurosci Res. 2003 Nov 1;74(3):393-405. [2]. Inuzuka T, Tamura A, Sato S, et al. Suppressive effect of E-64c on ischemic degradation of cerebral proteins following occlusion of the middle cerebral artery in rats[J]. Brain research, 1990, 526(1): 177-179. |
Cas No. | 76684-89-4 | SDF | |
别名 | 阿洛司他丁酸 | ||
化学名 | (2S,3S)-3-[[(2S)-4-methyl-1-(3-methylbutylamino)-1-oxopentan-2-yl]carbamoyl]oxirane-2-carboxylic acid | ||
Canonical SMILES | CC(C)CCNC(=O)C(CC(C)C)NC(=O)C1C(O1)C(=O)O | ||
分子式 | C15H26N2O5 | 分子量 | 314.4 |
溶解度 | ≥ 31.4mg/mL in DMSO, ≥ 111.8 mg/mL in EtOH | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.1807 mL | 15.9033 mL | 31.8066 mL |
5 mM | 0.6361 mL | 3.1807 mL | 6.3613 mL |
10 mM | 0.3181 mL | 1.5903 mL | 3.1807 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet