Home>>Signaling Pathways>> Tyrosine Kinase>> ROS>>(E/Z)-BCI

(E/Z)-BCI

(Synonyms: BCI, NSC 150117) 目录号 : GC25000

(E/Z)-BCI (BCI, NSC 150117) is an inhibitor of dual specific phosphatase 1/6 (DUSP1/DUSP6) and mitogen-activated protein kinase with EC50 of 13.3 μM and 8.0 μM for DUSP6 and DUSP1 in cells, respectively. (E)-BCI induces apoptosis via generation of reactive oxygen species (ROS) and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells.

(E/Z)-BCI Chemical Structure

Cas No.:15982-84-0

规格 价格 库存 购买数量
5mg
¥1,926.00
现货
25mg
¥6,153.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(E/Z)-BCI (BCI, NSC 150117) is an inhibitor of dual specific phosphatase 1/6 (DUSP1/DUSP6) and mitogen-activated protein kinase with EC50 of 13.3 μM and 8.0 μM for DUSP6 and DUSP1 in cells, respectively. (E)-BCI induces apoptosis via generation of reactive oxygen species (ROS) and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells.

[1] Jong-Woon Shin, et al. Sci China Life Sci. 2018 Oct;61(10):1243-1253. [2] Vasiliy N Korotchenko, et al. Chembiochem. 2014 Jul 7;15(10):1436-45.

Chemical Properties

Cas No. 15982-84-0 SDF Download SDF
别名 BCI, NSC 150117
分子式 C22H23NO 分子量 317.42
溶解度 DMSO: 63 mg/mL (198.48 mM);Water: Insoluble;Ethanol: 20 mg/mL (63.01 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.1504 mL 15.752 mL 31.504 mL
5 mM 0.6301 mL 3.1504 mL 6.3008 mL
10 mM 0.315 mL 1.5752 mL 3.1504 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway

Inflammation 2019 Apr;42(2):672-681.PMID:30506106DOI:10.1007/s10753-018-0924-2.

Macrophages play a fundamental role in human chronic diseases such as rheumatoid arthritis, atherosclerosis, and cancer. In the present study, we demonstrated that dual-specificity phosphatase 6 (DUSP6) was upregulated by lipopolysaccharide (LPS) treatment of macrophages. (E/Z)-BCI hydrochloride (BCI) functions as a small molecule inhibitor of DUSP6, and BCI treatment inhibited DUSP6 expression in LPS-activated macrophages. BCI treatment inhibited LPS-triggered inflammatory cytokine production, including IL-1β and IL-6, but not TNF-α, and also affected macrophage polarization to an M1 phenotype. In addition, BCI treatment decreased reactive oxygen species (ROS) production and significantly elevated the levels of Nrf2. Interestingly, pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory responses was independent of extracellular signal-regulated kinase (ERK) signaling. Furthermore, BCI treatment inhibited phosphorylation of P65 and nuclear P65 expression in LPS-activated macrophages. These results demonstrated that pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory mediators and ROS production in macrophage cells via activating the Nrf2 signaling axis and inhibiting the NF-κB pathway. These anti-inflammatory effects indicated that BCI may be considered as a therapeutic agent for blocking inflammatory disorders.

Identification of upregulated genes in glioblastoma and glioblastoma cancer stem cells using bioinformatics analysis

Gene 2023 Jan 10;848:146895.PMID:36122609DOI:10.1016/j.gene.2022.146895.

Glioblastoma (GBM) is the most common malignant brain tumor among adults. Cancer stem cells (CSCs) are known to drive treatment resistance and recurrence. However, a few CSC markers have been identified as therapeutic targets for GBM. This study aimed to show highly coexpressed genes in GBM CSCs and TCGA GBM samples and to identify possible therapeutic targets for GBM. The gene expression profiles of GBM CSCs were obtained from Gene Expression Omnibus database. After the differentially upregulated genes were screened, functional enrichment analyses were performed using DAVID and Reactome databases. For upregulated genes, biological processes were mainly associated with the regulation of transcription. Subsequently, a protein-protein interaction network was constructed for upregulated genes through STRING, in which DUSP6, FGFR3, EGFR, SOX2, NES, and PLP1 were further identified as hub genes via MCC and MNC methods. Expression profiles of hub genes and their association with survival were examined in TCGA GBM dataset using GEPIA2 platform. The expression levels of four hub genes were found to be increased in TCGA GBM samples. Of these, DUSP6 and SOX2 had prognostic value for patients with GBM. Molecular compounds targeting DUSP6 were searched through PubChem database. (E/Z)-BCI and BCI were found to be inhibitors of DUSP6. The molecular docking was performed using Autodock vina 1.02. The compounds showed strong binding capacities by forming various interactions with the ERK2 binding domain of DUSP6. Hence, the current study unravels the potential of (E/Z)-BCI and BCI compounds as possible anti-cancer molecules for GBM treatment.

DUSP6 expression is associated with osteoporosis through the regulation of osteoclast differentiation via ERK2/Smad2 signaling

Cell Death Dis 2021 Sep 2;12(9):825.PMID:34475393DOI:10.1038/s41419-021-04110-y.

Osteoporosis-related fractures, such as femoral neck and vertebral fractures, are common in aged people, resulting in increased disability rate and health-care costs. Thus, it is of great importance to clarify the mechanism of osteoclast-related osteoporosis and find effective ways to avoid its complication. In this study, gene expression profile analysis and real-time polymerase chain reaction revealed that DUSP6 expression was suppressed in human and mice osteoporosis cases. In vitro experiments confirmed that DUSP6 overexpression prevented osteoclastogenesis, whereas inhibition of DUSP6 by small interference RNA or with a chemical inhibitor, (E/Z)-BCI, had the opposite effect. (E/Z)-BCl significantly accelerated the bone loss process in vivo by enhancing osteoclastogenesis. Bioinformatics analyses and in vitro experiments indicated that miR-181a was an upstream regulator of DUSP6. Moreover, miR-181a positively induced the differentiation and negatively regulated the apoptosis of osteoclasts via DUSP6. Furthermore, downstream signals by ERK2 and SMAD2 were also found to be involved in this process. Evaluation of ERK2-deficiency bone marrow-derived macrophages confirmed the role of ERK2 signaling in the DUSP6-mediated osteoclastogenesis. Additionally, immunoprecipitation assays confirmed that DUSP6 directly modified the phosphorylation status of SMAD2 and the subsequent nuclear transportation of NFATC1 to regulate osteoclast differentiation. Altogether, this study demonstrated for the first time the role of miRNA-181a/DUSP6 in the progression of osteoporosis via the ERK2 and SMAD2 signaling pathway. Hence, DUSP6 may represent a novel target for the treatment of osteoclast-related diseases in the future.

Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance

Cancer Lett 2018 Jan 1;412:243-255.PMID:29050982DOI:10.1016/j.canlet.2017.10.007.

Gastric cancer (GC) is the second cause of cancer-related death. Cisplatin (CDDP) is widely used as the standard GC treatment, but relapse and metastasis are common because of intrinsic or acquired drug resistance. The mitogen-activated protein kinase phosphatases (MAPK)-extracellular signal regulated kinases (ERK) pathway contributes to GC progression and drug resistance, but targeting the MAPK-ERK pathway is challenging in GC therapy. Here, we demonstrated that dual-specificity phosphatases 6 (DUSP6) was overexpressed in GC and predicted poor overall survival and progression-free survival. Knockdown DUSP6 inhibited GC proliferation, migration, invasion and induced apoptosis. (E/Z)-BCI hydrochloride (BCI), a DUSP6 small molecule inhibitor, increased the activity of ERK but interestingly decreased the expression of ERK response genes in BGC823, SGC7901 and CDDP-resistant SGC7901/DDP cells. BCI also caused cell death through the DNA damage response (DDR) pathway. Moreover, BCI inhibited cell proliferation, migration and invasion in a receptor-independent manner and enhanced CDDP cytotoxicity at pharmacological concentrations in the GC cells. In vivo experiments further showed that BCI enhances the antitumor effects of CDDP in cell-based xenografts and PDX models. In summary, our findings indicated that disruption of DUSP6 by BCI enhanced CDDP-induced cell death and apoptosis in GC may partly through ERK and DDR pathways. Thus, this study suggests that DUSP6 is a potential prognostic biomarker and a promising target for GC therapy.

Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes

Oncotarget 2019 May 21;10(36):3315-3327.PMID:31164954doi

Dual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6's role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone. Quantitative PCR was used to evaluate levels of ERK pathway response genes to BCI in combination with recombinant HE4 (rHE4), carboplatin, and paclitaxel. Expression of EGR1, a promoter of apoptosis, was higher in cells co-treated with BCI and paclitaxel or carboplatin than in cells treated with chemotherapeutic agents alone, while expression of the proto-oncogene c-JUN was decreased with co-treatment. The effect of BCI on the expression of these two genes opposed that of rHE4. Pathway focused quantitative PCR also revealed suppression of ERBB3 in cells co-treated with BCI plus carboplatin or paclitaxel. Finally, expression levels of DUSP6 in EOC tissue were evaluated by immunohistochemistry, revealing significantly increased levels of DUSP6 in serous EOC tissue compared to adjacent normal tissue. A positive correlation between HE4 and DUSP6 levels was determined by Spearman Rank correlation. In conclusion, DUSP6 inhibition sensitizes ovarian cancer cells to chemotherapeutic agents and alters gene expression of ERK response genes, suggesting that DUSP6 could plausibly function as a novel therapeutic target to reduce chemoresistance in EOC.