Home>>Signaling Pathways>> PROTAC>> Ligand for E3 Ligase>>E3 ligase Ligand 1 dihydrochloride

E3 ligase Ligand 1 dihydrochloride Sale

目录号 : GC34291

E3ligaseLigand1dihydrochloride是VHLE3连接酶(b>VHLE3ligase)配体,可用于PROTAC技术。

E3 ligase Ligand 1 dihydrochloride Chemical Structure

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,455.00
现货
100mg
¥2,231.00
现货
500mg
¥6,694.00
现货
1g
¥10,710.00
现货
2g
¥16,065.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

E3 ligase Ligand 1 dihydrochloride is a Hippel-Landau (VHL) E3 ligase-binding moiety based on PROTAC technology.

E3 ligase Ligand 1 dihydrochloride is a Hippel-Landau (VHL) E3 ligase-binding moiety based on PROTAC technology. E3 ligase Ligand 1 is a part of the active BRD4 PROTAC ARV-771, wich is a potent pan-BET degrader with antitumor activity[1].

[1]. Raina K, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7124-9.

Chemical Properties

Cas No. SDF
Canonical SMILES N[C@@H](C(C)(C)C)C(N1[C@H](C(N[C@@H](C)C2=CC=C(C3=C(C)N=CS3)C=C2)=O)C[C@@H](O)C1)=O.Cl.Cl
分子式 C23H34Cl2N4O3S 分子量 517.51
溶解度 DMSO : 100 mg/mL (193.23 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9323 mL 9.6616 mL 19.3233 mL
5 mM 0.3865 mL 1.9323 mL 3.8647 mL
10 mM 0.1932 mL 0.9662 mL 1.9323 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

RNF186 regulates EFNB1 (ephrin B1)-EPHB2-induced autophagy in the colonic epithelial cells for the maintenance of intestinal homeostasis

Although genome-wide association studies have identified the gene RNF186 encoding an E3 ubiquitin-protein ligase as conferring susceptibility to ulcerative colitis, the exact function of this protein remains unclear. In the present study, we demonstrate an important role for RNF186 in macroautophagy/autophagy activation in colonic epithelial cells and intestinal homeostasis. Mechanistically, RNF186 acts as an E3 ubiquitin-protein ligase for EPHB2 and regulates the ubiquitination of EPHB2. Upon stimulation by ligand EFNB1 (ephrin B1), EPHB2 is ubiquitinated by RNF186 at Lys892, and further recruits MAP1LC3B for autophagy. Compared to control mice, rnf186-/- and ephb2-/- mice have a more severe phenotype in the DSS-induced colitis model, which is due to a defect in autophagy in colon epithelial cells. More importantly, treatment with ephrin-B1-Fc recombinant protein effectively relieves DSS-induced mouse colitis, which suggests that ephrin-B1-Fc may be a potential therapy for human inflammatory bowel diseases.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG16L1: autophagy related 16 like 1; ATP: adenosine triphosphate; Cas9: CRISPR associated protein 9; CD: Crohn disease; CQ: chloroquine; Csf2: colony stimulating factor 2; Cxcl1: c-x-c motif chemokine ligand 1; DMSO: dimethyl sulfoxide; DSS: dextran sodium sulfate; EFNB1: ephrin B1; EPHB2: EPH receptor B2; EPHB3: EPH receptor B3; EPHB2K788R: lysine 788 mutated to arginine in EPHB2; EPHB2K892R: lysine 892 mutated to arginine in EPHB2; ER: endoplasmic reticulum; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GWAS: genome-wide association studies; HRP: horseradish peroxidase; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel diseases; Il1b: interleukin 1 beta; Il6: interleukin 6; IRGM:immunity related GTPase M; i.p.: intraperitoneally; IPP: inorganic pyrophosphatase; KD: knockdown; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; NOD2: nucleotide binding oligomerization domain containing 2; PI3K: phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; RNF186: ring finger protein 186; RNF186A64T: alanine 64 mutated to threonine in RNF186; RNF186R179X: arginine 179 mutated to X in RNF186; RPS6: ribosomal protein S6; Tnf: tumor necrosis factor; SQSTM1: sequestosome 1; Ub: ubiquitin; UBE2D2: ubiquitin conjugating enzyme E2 D2; UBE2H: ubiquitin conjugating enzyme E2 H; UBE2K: ubiquitin conjugating enzyme E2 K; UBE2N: ubiquitin conjugating enzyme E2 N; UC: ulcerative colitis; ULK1:unc-51 like autophagy activating kinase 1; WT: wild type.

CRT-1/calreticulin and the E3 ligase EEL-1/HUWE1 control hemidesmosome maturation in C. elegans development

Hemidesmosomes connect the extracellular matrix (ECM) to intermediate filaments through ECM receptors and plakins (plectin and BPAG1e). They affect tissue integrity, wound healing, and carcinoma invasion. Although biochemical and time-lapse studies indicate that alpha6beta4-integrin (ECM receptor) and plectin play a central role in modulating hemidesmosome disassembly, the mechanisms controlling hemidesmosome biogenesis in vivo remain poorly understood. The nematode C. elegans provides a powerful genetic model to address this issue. We performed a genome-wide RNA interference screen in C. elegans, searching for genes that decrease the viability of a weak VAB-10A/plakin mutant. We identified 14 genes that have human homologs with predicted roles in different cellular processes. We further characterized two genes encoding the chaperone CRT-1/calreticulin and the HECT domain E3 ubiquitin ligase EEL-1/HUWE1. CRT-1 controls by as little as 2-fold the abundance of UNC-52/perlecan, an essential hemidesmosome ECM ligand. Likewise, EEL-1 fine tunes by 2-fold the abundance of myotactin, the putative hemidesmosome ECM receptor. CRT-1 and EEL-1 activities, and by extension other genes identified in our screen, are essential during embryonic development to enable hemidesmosomes exposed to mechanical tension to mature into a tension-resistant form. Our findings should help understand how hemidesmosome dynamics are regulated in vertebrate systems.

Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis

Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.

Small Molecular Weight Soybean Protein-Derived Peptides Nutriment Attenuates Rat Burn Injury-Induced Muscle Atrophy by Modulation of Ubiquitin-Proteasome System and Autophagy Signaling Pathway

This article describes results of the effect of dietary supplementation with small molecular weight soybean protein-derived peptides on major rat burn injury-induced muscle atrophy. As protein nutrients have been previously implicated to play an important role in improving burn injury outcomes, optimized more readily absorbed small molecular weight soybean protein-derived peptides were evaluated. Thus, the quantity, sodium dodecyl sulfate polyacrylamide-gel electrophoresis patterns, molecular weight distribution, and composition of amino acids of the prepared peptides were analyzed, and a major full-thickness 30% total body surface area burn-injury rat model was utilized to assess the impact of supplementation with soybean protein-derived peptides on initial systemic inflammatory responses as measured by interferon-gamma (IFN-γ), chemokine (C-C motif) ligand 2 (CCL2, also known as MCP-1), chemokine (C-C motif) ligand 7 (CCL7, also known as MCP-3), and generation of muscle atrophy as measured by tibialis anterior muscle (TAM) weight relative to total body weight. Induction of burn injury-induced muscle atrophy ubiquitin-proteasome system (UPS) signaling pathways in effected muscle tissues was determined by Western blot protein expression measurements of E3 ubiquitin-protein ligase TRIM-63 (TRIM63, also known as MuRF1) and F-box only protein 32 (FBXO32, also known as atrogin-1 or MAFbx). In addition, induction of burn injury-induced autophagy signaling pathways associated with muscle atrophy in effected muscle tissues was assessed by immunohistochemical analysis as measured by microtubule-associated proteins 1 light chain 3 (MAP1LC3, or commonly abbreviated as LC3) and beclin-1 (BECN1) expression, as well as relative induction of cytoplasmic-liberated form of MAP1LC3 (LC3-I) and phagophore and autophagosome membrane-bound form of MAP1LC3 (LC3-II), and BECN1 protein expression by Western blot analysis. Nutrient supplementation with small molecular weight soybean protein-derived peptides resulted a significant reduction in burn injury-induced inflammatory markers, muscle atrophy, induction of TRIM63 and FBXO32 muscle atrophy signaling pathways, and induction of autophagy signaling pathways LC3 and BECN1 associated with muscle atrophy. These results implicated that small molecular weight soybean-derived peptides dietary supplementation could be used as an adjunct therapy in burn injury management to reduce the development or severity of muscle atrophy for improved burn patient outcomes.

Codium fragile F2 sensitize colorectal cancer cells to TRAIL-induced apoptosis via c-FLIP ubiquitination

This study demonstrates that combined treatment with subtoxic doses of Codium extracts (CE), a flavonoid found in many fruits and vegetables, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces apoptosis in TRAIL-resistant colorectal cancer (CRC) cells. Effective induction of apoptosis by combined treatment with CE and TRAIL was not blocked by Bcl-xL overexpression, which is known to confer resistance to various chemotherapeutic agents. While TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in various CRC cells treated with TRAIL alone, co-treatment with CE efficiently recovered TRAIL-induced caspase activation. We observed that CE treatment of CRC cells did not change the expression of anti-apoptotic proteins and pro-apoptotic proteins, including death receptors (DR4 and DR5). However, CE treatment markedly reduced the protein level of the short form of the cellular FLICE-inhibitory protein (c-FLIPS), an inhibitor of caspase-8, via proteasome-mediated degradation. Collectively, these observations show that CE recovers TRAIL sensitivity in various CRC cells via down-regulation of c-FLIPS.