Home>>Signaling Pathways>> PI3K/Akt/mTOR Signaling>> AMPK>>EB-3D

EB-3D Sale

目录号 : GC39377

EB-3D is a potent and selective inhibitor of choline kinase α (ChoKα) with IC50 of 1 μM for ChoKα1. EB-3D induces deregulation of the AMPK-mTOR pathway and apoptosis in leukemia T-cells.

EB-3D Chemical Structure

Cas No.:1839150-63-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,425.00
现货
5mg
¥1,710.00
现货
10mg
¥2,700.00
现货
50mg
¥7,470.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

EB-3D is a potent and selective inhibitor of choline kinase α (ChoKα) with IC50 of 1 μM for ChoKα1. EB-3D induces deregulation of the AMPK-mTOR pathway and apoptosis in leukemia T-cells.

[1] Elena Mariotto, et al. Cancers (Basel). 2018 Oct 22;10(10):391. [2] Elena Mariotto, et al. Biochem Pharmacol. 2018 Sep;155:213-223.

Chemical Properties

Cas No. 1839150-63-8 SDF
Canonical SMILES CN(C1=CC=[N+](CC2=CC=C(OCCOC3=CC=C(C[N+]4=CC=C(N(C)C)C=C4)C=C3)C=C2)C=C1)C.[Br-].[Br-]
分子式 C30H36Br2N4O2 分子量 644.44
溶解度 DMSO: 50 mg/mL (77.59 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5517 mL 7.7587 mL 15.5173 mL
5 mM 0.3103 mL 1.5517 mL 3.1035 mL
10 mM 0.1552 mL 0.7759 mL 1.5517 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Choline kinase inhibitors EB-3D and EB-3P interferes with lipid homeostasis in HepG2 cells

Sci Rep 2019 Mar 25;9(1):5109.PMID:30911014DOI:10.1038/s41598-019-40885-z.

A full understanding of the molecular mechanism of action of choline kinase α (ChoKα) inhibitors at the cell level is essential for developing therapeutic and preventive approaches for cancer. The aim of the present study was to evaluate the effects of the ChoKα inhibitors EB-3D and EB-3P on lipid metabolism in HepG2 cells. We used [methyl-14C]choline, [1,2-14C]acetic acid and [2-3H]glycerol as exogenous precursors of the corresponding phospholipids and neutral lipids. [Methyl-14C]choline was also used to determine choline uptake. Protein levels were determined by Western blot. Ultrastructural alterations were investigated by transmission electron microscopy. In this work, we demonstrate that EB-3D and EB-3P interfere with phosphatidylcholine biosynthesis via both CDP-choline pathway and choline uptake by the cell. Moreover, the synthesis of both diacylglycerols and triacylglycerols was affected by cell exposure to both inhibitors. These effects were accompanied by a substantial decrease in cholesterol biosynthesis, as well as alterations in the expression of proteins related to cholesterol homeostasis. We also found that EB-3D and EB-3P lowered ChoKα protein levels. All these effects could be explained by the modulation of the AMP-activated protein kinase signalling pathway. We show that both inhibitors cause mitochondrial alteration and an endoplasmic reticulum stress response. EB-3D and EB-3P exert effects on ChoKα expression, AMPK activation, apoptosis, endoplasmic reticulum stress and lipid metabolism. Taken together, results show that EB-3D and EB-3P have potential anti-cancer activity through the deregulation of lipid metabolism.

EB-3D a novel choline kinase inhibitor induces deregulation of the AMPK-mTOR pathway and apoptosis in leukemia T-cells

Biochem Pharmacol 2018 Sep;155:213-223.PMID:30006194DOI:10.1016/j.bcp.2018.07.004.

Choline kinase alpha 1 (ChoKα1) has recently become an interesting therapeutic target since its overexpression has been associated to tumorigenesis in many cancers. Nevertheless, little is known regarding hematological malignancies. In this manuscript, we investigated the effect of a novel and selective ChoKα inhibitor EB-3D in T acute lymphoblastic leukemia (T-ALL). The effect of EB-3D was evaluated in a panel of T-leukemia cell lines and ex-vivo primary cultures derived from pediatric T-ALL patients. We also evaluated in detail, using Reverse Phase Protein Array (RPPA), protein phosphorylation level changes in T-ALL cells upon treatment. The drug exhibits a potent antiproliferative activity in a panel of T-leukemia cell lines and primary cultures of pediatric patients. Moreover, the drug strongly induces apoptosis and more importantly it enhanced T-leukemia cell sensitivity to chemotherapeutic agents, such as dexamethasone and l-asparaginase. In addition, the compound induces an early activation of AMPK, the main regulator of cellular energy homeostasis, by its phosphorylation at residue T712 of catalytic subunit α, and thus repressing mTORC1 pathway, as shown by mTOR S2448 dephosphorylation. The inhibition of mTOR in turn affects the activity of several known downstream targets, such as 4E-BP1, p70S6K, S6 Ribosomal Protein and GSK3 that ultimately may lead to a reduction of protein synthesis and cell death. Taken together, our findings suggest that targeting ChoKα may be an interesting option for treating T-ALL and that EB-3D could represent a valuable therapeutic tool.

Choline Kinase Alpha Inhibition by EB-3D Triggers Cellular Senescence, Reduces Tumor Growth and Metastatic Dissemination in Breast Cancer

Cancers (Basel) 2018 Oct 22;10(10):391.PMID:30360374DOI:10.3390/cancers10100391.

Choline kinase (ChoK) is the first enzyme of the Kennedy pathway leading to the biosynthesis of phosphatidylcholine (PtdCho), the most abundant phospholipid in eukaryotic cell membranes. EB-3D is a novel choline kinase α1 (ChoKα1) inhibitor with potent antiproliferative activity against a panel of several cancer cell lines. ChoKα1 is particularly overexpressed and hyperactivated in aggressive breast cancer. By NMR analysis, we demonstrated that EB-3D is able to reduce the synthesis of phosphocholine, and using flow cytometry, immunoblotting, and q-RT-PCR as well as proliferation and invasion assays, we proved that EB-3D strongly impairs breast cancer cell proliferation, migration, and invasion. EB-3D induces senescence in breast cancer cell lines through the activation of the metabolic sensor AMPK and the subsequent dephosphorylation of mTORC1 downstream targets, such as p70S6K, S6 ribosomal protein, and 4E-BP1. Moreover, EB-3D strongly synergizes with drugs commonly used for breast cancer treatment. The antitumorigenic potential of EB-3D was evaluated in vivo in the syngeneic orthotopic E0771 mouse model of breast cancer, where it induces a significant reduction of the tumor mass at low doses. In addition, EB-3D showed an antimetastatic effect in experimental and spontaneous metastasis models. Altogether, our results indicate that EB-3D could be a promising new anticancer agent to improve aggressive breast cancer treatment protocols.

Fractal Design Boosts Extrusion-Based 3D Printing of Bone-Mimicking Radial-Gradient Scaffolds

Research (Wash D C) 2021 Nov 23;2021:9892689.PMID:34909694DOI:10.34133/2021/9892689.

Although extrusion-based three-dimensional (EB-3D) printing technique has been widely used in the complex fabrication of bone tissue-engineered scaffolds, a natural bone-like radial-gradient scaffold by this processing method is of huge challenge and still unmet. Inspired by a typical fractal structure of Koch snowflake, for the first time, a fractal-like porous scaffold with a controllable hierarchical gradient in the radial direction is presented via fractal design and then implemented by EB-3D printing. This radial-gradient structure successfully mimics the radially gradual decrease in porosity of natural bone from cancellous bone to cortical bone. First, we create a design-to-fabrication workflow with embedding the graded data on basis of fractal design into digital processing to instruct the extrusion process of fractal-like scaffolds. Further, by a combination of suitable extruded inks, a series of bone-mimicking scaffolds with a 3-iteration fractal-like structure are fabricated to demonstrate their superiority, including radial porosity, mechanical property, and permeability. This study showcases a robust strategy to overcome the limitations of conventional EB-3D printers for the design and fabrication of functionally graded scaffolds, showing great potential in bone tissue engineering.