Home>>Signaling Pathways>> Immunology/Inflammation>> NF-κB>>Edasalonexent (CAT-1004)

Edasalonexent (CAT-1004) Sale

(Synonyms: CAT-1004) 目录号 : GC31557

Edasalonexent (CAT-1004) (CAT-1004) 是一种口服生物可利用的 NF-κB 抑制剂。

Edasalonexent (CAT-1004) Chemical Structure

Cas No.:1204317-86-1

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥3,400.00
现货
5mg
¥2,164.00
现货
10mg
¥3,400.00
现货
50mg
¥10,201.00
现货
100mg
¥13,910.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Animal experiment:

Mice[1]Male mdx or WT mice are used. Drug treatment protocols entail feeding individually housed mice a specialty control chow or chow containing either CAT-1041 or Edasalonexent (0.75% w/w) ad libitum starting at 4 weeks of age. Average drug consumption typically ranges between 0.75 and 1 mg/g body weight per day. The 24-hour plasma exposure at this dosage is 450ng hr/mL for Edasalonexent[1].

References:

[1]. Hammers DW, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016 Dec 22;1(21):e90341.
[2]. Donovan JM, et al. A Novel NF-κB Inhibitor, Edasalonexent (CAT-1004), in Development as a Disease-Modifying Treatment for Patients With Duchenne Muscular Dystrophy: Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics in Adult Subjects. J Clin Pharmacol. 2017 May;57(5):627-639.

产品描述

Edasalonexent is an orally bioavailable NF-κB inhibitor.

Edasalonexent is an orally administered small molecule in which salicylic acid and docosahexaenoic acid (DHA) are covalently conjugated through an ethylenediamine linker and that is designed to synergistically leverage the ability of both of these compounds to inhibit NF-κB. Edasalonexent significantly inhibits NF-κB p65-dependent inflammatory responses as well as downstream proinflammatory genes modulated by p65 in the golden retriever duchenne muscular dystrophy (DMD) model[2].

The treatment of mdx mice with Edasalonexent for 20 weeks results in reduced susceptibility of the extensor digitorum longus muscle to eccentric contraction-induced injury[1].

[1]. Hammers DW, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016 Dec 22;1(21):e90341. [2]. Donovan JM, et al. A Novel NF-κB Inhibitor, Edasalonexent (CAT-1004), in Development as a Disease-Modifying Treatment for Patients With Duchenne Muscular Dystrophy: Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics in Adult Subjects. J Clin Pharmacol. 2017 May;57(5):627-639.

Chemical Properties

Cas No. 1204317-86-1 SDF
别名 CAT-1004
Canonical SMILES O=C(NCCNC(CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)=O)C1=CC=CC=C1O
分子式 C31H42N2O3 分子量 490.68
溶解度 DMSO: 120 mg/mL (244.56 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.038 mL 10.1899 mL 20.3799 mL
5 mM 0.4076 mL 2.038 mL 4.076 mL
10 mM 0.2038 mL 1.019 mL 2.038 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Phase 1 Study of Edasalonexent (CAT-1004), an Oral NF-κB Inhibitor, in Pediatric Patients with Duchenne Muscular Dystrophy

Background: Edasalonexent is an orally administered small molecule designed to inhibit NF-κB, which is activated from infancy in Duchenne muscular dystrophy and is central to causing muscle damage and preventing muscle regeneration. Objective: Evaluate the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of three doses of edasalonexent in ambulatory males ≥4 to <8 years of age with genetically confirmed Duchenne muscular dystrophy. Methods: This was a 1-week, open-label, multiple-dose study with 3 sequential ascending doses (33, 67 and 100 mg/kg/day) of edasalonexent administered under different dietary conditions to 17 males with a mean age of 5.5 years. Results: All doses of edasalonexent were well tolerated, with no serious adverse events, no drug discontinuations and no dose reductions. The majority of adverse events were mild, and the most common adverse events were gastrointestinal (primarily diarrhea). Edasalonexent was rapidly absorbed with peak levels observed 2-6 hours after dosing and exposures appeared to increase nearly proportionally to dose for the 2 lower and all 3 doses under low-fat and high-fat meal conditions, respectively. Only minor plasma accumulation of edasalonexent was observed with 7 days of dosing. After treatment with edasalonexent for 7 days, levels of NF-κB-regulated genes and serum proteins were decreased. Conclusions: This first report of edasalonexent oral administration for one week in male pediatric patients with Duchenne muscular dystrophy showed that treatment was well tolerated and inhibited NF-kB pathways.

A Novel NF-κB Inhibitor, Edasalonexent (CAT-1004), in Development as a Disease-Modifying Treatment for Patients With Duchenne Muscular Dystrophy: Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics in Adult Subjects

In Duchenne muscular dystrophy (DMD), NF-κB is activated in skeletal muscle from infancy regardless of the underlying dystrophin mutation and drives inflammation and muscle degeneration while inhibiting muscle regeneration. Edasalonexent (CAT-1004) is a bifunctional orally administered small molecule that covalently links 2 compounds known to inhibit NF-κB, salicylic acid and docosahexaenoic acid (DHA). Edasalonexent is designed to inhibit activated NF-κB upon intracellular cleavage to these bioactive components. Preclinical data demonstrate disease-modifying activity in DMD animal models. Three placebo-controlled studies in adult subjects assessed the safety, pharmacokinetics, and pharmacodynamics of single or multiple edasalonexent doses up to 6000 mg. Seventy-nine adult subjects received edasalonexent, and 25 received placebo. Pharmacokinetic results were consistent with the intracellular cleavage of edasalonexent to its active components. Food increased plasma exposures of edasalonexent and salicyluric acid, an intracellularly formed metabolite of salicylic acid. The NF-κB pathway and proteosome gene expression profiles in peripheral mononuclear cells were significantly decreased (P = .02 and P = .002, respectively) after 2 weeks of edasalonexent treatment. NF-κB activity was inhibited following a single dose of edasalonexent but not by equimolar doses of salicylic acid and DHA. Edasalonexent was well tolerated, and the most common adverse events were mild diarrhea and headache. In first-in-human studies, edasalonexent was safe, well tolerated, and inhibited activated NF-κB pathways, suggesting potential therapeutic utility in DMD regardless of the causative dystrophin mutation, as well as other NF-κB-mediated diseases.

Prognostic indicators of disease progression in Duchenne muscular dystrophy: A literature review and evidence synthesis

Background: Duchenne muscular dystrophy (DMD) is a rare, severely debilitating, and fatal neuromuscular disease characterized by progressive muscle degeneration. Like in many orphan diseases, randomized controlled trials are uncommon in DMD, resulting in the need to indirectly compare treatment effects, for example by pooling individual patient-level data from multiple sources. However, to derive reliable estimates, it is necessary to ensure that the samples considered are comparable with respect to factors significantly affecting the clinical progression of the disease. To help inform such analyses, the objective of this study was to review and synthesise published evidence of prognostic indicators of disease progression in DMD. We searched MEDLINE (via Ovid), Embase (via Ovid) and the Cochrane Library (via Wiley) for records published from inception up until April 23 2021, reporting evidence of prognostic indicators of disease progression in DMD. Risk of bias was established with the grading system of the Centre for Evidence-Based Medicine (CEBM).
Results: Our search included 135 studies involving 25,610 patients from 18 countries across six continents (Africa, Asia, Australia, Europe, North America and South America). We identified a total of 23 prognostic indicators of disease progression in DMD, namely age at diagnosis, age at onset of symptoms, ataluren treatment, ATL1102, BMI, cardiac medication, DMD genetic modifiers, DMD mutation type, drisapersen, edasalonexent, eteplirsen, glucocorticoid exposure, height, idebenone, lower limb surgery, orthoses, oxandrolone, spinal surgery, TAS-205, vamorolone, vitlolarsen, ventilation support, and weight. Of these, cardiac medication, DMD genetic modifiers, DMD mutation type, and glucocorticoid exposure were designated core prognostic indicators, each supported by a high level of evidence and significantly affecting a wide range of clinical outcomes.
Conclusion: This study provides a current summary of prognostic indicators of disease progression in DMD, which will help inform the design of comparative analyses and future data collection initiatives in this patient population.

Disease-modifying effects of orally bioavailable NF- κ B inhibitors in dystrophin-deficient muscle

Duchenne muscular dystrophy (DMD) is a devastating muscle disease characterized by progressive muscle deterioration and replacement with an aberrant fatty, fibrous matrix. Chronic upregulation of nuclear factor κB (NF-κB) is implicated as a driver of the dystrophic pathogenesis. Herein, 2 members of a novel class of NF-κB inhibitors, edasalonexent (formerly CAT-1004) and CAT-1041, were evaluated in both mdx mouse and golden retriever muscular dystrophy (GRMD) dog models of DMD. These orally bioavailable compounds consist of a polyunsaturated fatty acid conjugated to salicylic acid and potently suppress the pathogenic NF-κB subunit p65/RelA in vitro. In vivo, CAT-1041 effectively improved the phenotype of mdx mice undergoing voluntary wheel running, in terms of activity, muscle mass and function, damage, inflammation, fibrosis, and cardiac pathology. We identified significant increases in dysferlin as a possible contributor to the protective effect of CAT-1041 to sarcolemmal damage. Furthermore, CAT-1041 improved the more severe GRMD phenotype in a canine case study, where muscle mass and diaphragm function were maintained in a treated GRMD dog. These results demonstrate that NF-κB modulation by edasalonexent and CAT-1041 is effective in ameliorating the dystrophic process and these compounds are candidates for new treatments for DMD patients.

Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial

Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.