Home>>Proteins>> Viral Antigens>> Influenza>>EGA

EGA

目录号 : GC43588

An inhibitor of endosomal trafficking

EGA Chemical Structure

Cas No.:415687-81-9

规格 价格 库存 购买数量
1mg
¥428.00
现货
5mg
¥1,508.00
现货
10mg
¥2,141.00
现货
25mg
¥4,814.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

EGA is an inhibitor of endosomal trafficking. It increases accumulation of fluorescently labeled EGF in early endosomes in HeLa cells when used at a concentration of 20 μM. EGA inhibits cell death induced by anthrax lethal toxin in RAW264.7 cells (IC50 = 1.7 μM) as well as by additional acid-dependent bacterial toxins, including diphtheria toxin, P. aeruginosa ExoA, and H. ducreyi cytolethal distending toxin (Hd-CDT), in various cell types. It also inhibits infection of Vero and HeLa cells by the low pH-dependent lymphocytic choriomeningitis (LCMV; Armstrong strain) and influenza A/WSN/33 viruses, respectively.

Chemical Properties

Cas No. 415687-81-9 SDF
Canonical SMILES CC1=CC=CC(C)=C1NC(N/N=C/C2=CC=C(Br)C=C2)=O
分子式 C16H16BrN3O 分子量 346.2
溶解度 DMSO: 5 mg/ml 储存条件 Store at -20°C,protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8885 mL 14.4425 mL 28.885 mL
5 mM 0.5777 mL 2.8885 mL 5.777 mL
10 mM 0.2889 mL 1.4443 mL 2.8885 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

On-Line Thermally Induced Evolved Gas Analysis: An Update-Part 1: EGA-MS

Molecules 2022 May 30;27(11):3518.PMID:35684458DOI:10.3390/molecules27113518.

Advances in on-line thermally induced evolved gas analysis (OLTI-EGA) have been systematically reported by our group to update their applications in several different fields and to provide useful starting references. The importance of an accurate interpretation of the thermally-induced reaction mechanism which involves the formation of gaseous species is necessary to obtain the characterization of the evolved products. In this review, applications of Evolved Gas Analysis (EGA) performed by on-line coupling heating devices to mass spectrometry (EGA-MS), are reported. Reported references clearly demonstrate that the characterization of the nature of volatile products released by a substance subjected to a controlled temperature program allows us to prove a supposed reaction or composition, either under isothermal or under heating conditions. Selected 2019, 2020, and 2021 references are collected and briefly described in this review.

On-Line Thermally Induced Evolved Gas Analysis: An Update-Part 2: EGA-FTIR

Molecules 2022 Dec 15;27(24):8926.PMID:36558054DOI:10.3390/molecules27248926.

The on-line thermally induced evolved gas analysis (OLTI-EGA) is widely applied in many different fields. Aimed to update the applications, our group has systematically collected and published examples of EGA characterizations. Following the recently published review on EGA-MS applications, this second part reviews the latest applications of Evolved Gas Analysis performed by on-line coupling heating devices to infrared spectrometers (EGA-FTIR). The selected 2019, 2020, 2021 and early 2022 references are collected and briefly described in this review; these are useful to help researchers to easily find applications that are sometimes difficult to locate.

Evaluating clinical accuracy of continuous glucose monitoring systems: Continuous Glucose-Error Grid Analysis (CG-EGA)

Curr Diabetes Rev 2008 Aug;4(3):193-9.PMID:18690900DOI:10.2174/157339908785294389.

Continuous Glucose Sensors (CGS) generate rich and informative continuous data streams which have the potential to improve the glycemic condition of the patient with diabetes. Such data are critical to the development of closed loop systems for automated glycemic control. Thus the numerical and clinical accuracy of such must be assured. Although numerical point accuracy of these systems has been described using traditional statistics, there are no requirements, as of yet, for determining and reporting the rate (trend) accuracy of the data generated. In addition, little attention has been paid to the clinical accuracy. of these systems. Continuous Glucose-Error Grid Analysis (CG-EGA) is the only method currently available for assessing the clinical accuracy of such data and reporting this accuracy for each of the relevant glycemic ranges, - hypoglycemia, euglycemia, hyperglycemia. This manuscript reviews the development of the original Error Grid Analysis (EGA) and describes its inadequacies when used to determine point accuracy of CGS systems. The development of CG-EGA as a logical extension of EGA for use with CGS is described in detail and examples of how it can be used to describe the clinical accuracy of several CGS are shown. Information is presented on how to obtain assistance with the use of CG-EGA.

EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

Toxins (Basel) 2016 Apr 1;8(4):101.PMID:27043629DOI:10.3390/toxins8040101.

The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

Action modes of recombinant endocellulase, EGA, and its domains on cotton fabrics

Biotechnol Lett 2015 Aug;37(8):1615-22.PMID:25975370DOI:10.1007/s10529-015-1832-2.

Objectives: The action modes of an endocellulase, EGA, and its domains (CD9 and CBM3) during enzymatic treatment of cotton fabrics were investigated. Results: EGA, CD9 and CBM3 had the binding capacity to cellulose substrates, of which the filter paper was the substrate with the strongest binding capacity. Analyses of scanning electronic microscopy indicated that EGA and its catalytic domain CD9 etched the surface of cotton fabrics and broke the fibers of long chains. On the other hand, the binding domain CBM3 only resulted in swelling of cotton fibers. Both EGA and its catalytic domain CD9 had minimal effect on the weight loss of cotton fabrics, whereas the effect of EGA and CD9 on the degree of polymerization and breaking strength was significant. After 12 h enzymatic action, the values of weight loss ratio for EGA and CD9 were 2.07 and 2.21 %, respectively, meanwhile the reductions in fabric strength were 27.04 % for EGA and 17.23 % for CD9. Conclusions: In contrast to the action of EGA and CD9, CBM3 showed no significant changes in terms of the weight loss ratio, degree of polymerization, and fabric strength.