EGNHS
(Synonyms: 二(N-琥珀酰亚胺)乙烯乙二醇二琥珀酸酯,EGS crosslinker) 目录号 : GC61794EGNHS是一种蛋白水解靶向嵌合体(PROTAC) linker,属于烷基/醚类,能够用于合成PROTAC分子。
Cas No.:70539-42-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >97.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
EGNHS is a proteolytic targeting chimera (PROTAC) linker, which belongs to the alkyl/ether class and can be used to synthesize PROTAC molecules[1]. PROTAC is a hybrid bifunctional small molecule compound, a "three-body" polymer - target protein ligand-linker-E3 ligand[2]. EGNHS can form a cross-link between Lys232 and Lys241 of horseradish peroxidase C (HRP) and modify Lys174 without forming a cross-link[3]. EGNHS is a cross-linker containing a reactive NHS ester (N-hydroxysuccinimide) end. NHS ester is a commonly used primary amine reactive group. It can react with primary amine groups to form a stable amide bond, which helps to effectively label the target molecule[4]. EGNHS chemically modified porcine trypsin to obtain EG-trypsin, which improved the thermal stability and catalytic performance of trypsin[5].
References:
[1] An S, Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs[J]. EBioMedicine, 2018, 36: 553-562.
[2] Li R, Liu M, Yang Z, et al. Proteolysis-targeting chimeras (PROTACs) in cancer therapy: present and future[J]. Molecules, 2022, 27(24): 8828.
[3] O'Brien A M, Ó'Fágáin C, Nielsen P F, et al. Location of crosslinks in chemically stabilized horseradish peroxidase: implications for design of crosslinks[J]. Biotechnology and bioengineering, 2001, 76(4): 277-284.
[4] Flynne W G. Biotechnology and bioengineering[M]. Nova Publishers, 2008.
[5] Colleary S, O'fagain C. Stability and catalytic properties of chemically modified pig trypsin[J]. Biocatalysis and Biotransformation, 2009, 27(5-6): 309-317.
EGNHS是一种蛋白水解靶向嵌合体(PROTAC) linker,属于烷基/醚类,能够用于合成PROTAC分子[1]。PROTAC是一种杂合双功能小分子化合物,是一种“三体”聚合物——靶蛋白配体-Linker-E3配体[2]。EGNHS能够在辣根过氧化物酶C(HRP)的Lys232和Lys241之间形成交联,并在不形成交联的情况下修饰Lys174[3]。EGNHS是一种交联剂,含有反应性NHS酯(N-羟基琥珀酰亚胺)末端,NHS酯是常用的伯胺基反应基团,它能够与伯胺基反应形成稳定的酰胺键,有助于目标分子的有效标记[4]。EGNHS对猪胰蛋白酶进行化学修饰,得到EG-胰蛋白酶,提高了胰蛋白酶的热稳定性和催化性能[5]。
Cas No. | 70539-42-3 | SDF | |
别名 | 二(N-琥珀酰亚胺)乙烯乙二醇二琥珀酸酯,EGS crosslinker | ||
Canonical SMILES | O=C(OCCOC(CCC(ON1C(CCC1=O)=O)=O)=O)CCC(ON2C(CCC2=O)=O)=O | ||
分子式 | C18H20N2O12 | 分子量 | 456.36 |
溶解度 | DMSO: 100 mg/mL (219.13 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.1913 mL | 10.9563 mL | 21.9125 mL |
5 mM | 0.4383 mL | 2.1913 mL | 4.3825 mL |
10 mM | 0.2191 mL | 1.0956 mL | 2.1913 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila
Enzyme Microb Technol 2010 May 5;46(6):430-7.PMID:25919617DOI:10.1016/j.enzmictec.2010.01.004.
Laccase from two different source organisms, Myceliophthora thermophila and Trametes hirsuta, were subjected to chemical modification in solution by (i) two bifunctional reagents, ethylene-glycol-N-hydroxy succinimide (EGNHS) and glutaraldehyde and (ii) by the monofunctional citraconic anhydride. The untreated and chemically modified forms of both enzymes were then immobilised onto three different types of mesoporous silicate (MPS) particle (MCM, CNS and SBA-15). Thermal stabilities of native, modified-soluble and immobilised laccases were then evaluated. Although the two laccases have similar lysine contents, those of M. thermophila are clearly more amenable to chemical modification. Treatment of the M. thermophila enzyme with EGNHS led to a 8.7-fold increase in thermal stability over the free soluble enzyme while glutaraldehyde gave a 5.7-fold increase. Increased activity of M. thermophila laccase occurred only with citraconic anhydride modification (a 3-fold increase), while the glutaraldehyde modification marginally increased the activity of the T. hirsuta enzyme (by 1.2-fold). Upon immobilisation onto MPS, the greatest increase in stability was for the glutaraldehyde-treated M. thermophila preparation on SBA-15 (24-fold over the soluble enzyme). Chemical modification of laccase from T. hirsuta with both glutaraldehyde and EGNHS gave only a 2-fold increase in stability, increasing >4-fold upon immobilisation onto SBA-15 and MCM-41/98.
Location of crosslinks in chemically stabilized horseradish peroxidase: implications for design of crosslinks
Biotechnol Bioeng 2001 Dec;76(4):277-84.PMID:11745154DOI:10.1002/bit.1194.
The bifunctional compound, ethylene-glycol bis(N-hydroxysuccinimidylsuccinate) (EGNHS), stabilizes horseradish peroxidase C (HRP) by reaction with the enzyme's lysine residues. In this study we compare native and modified HRP by proteolytic fragmentation, peptide sequencing, and mass spectroscopy, and identify the sites of modification. Most significantly, EGNHS is shown to form a crosslink between Lys232 and Lys241 of HRP and modifies Lys174 without formation of a crosslink. These findings are in agreement with the lysine side-chain reactivities predicted from the surface accessibility of the amino groups, and the maximal span of 16 A of the EGNHS crosslinker.