Home>>Signaling Pathways>> Obesity, Appetite Control & Diabetes>> NAFLD & NASH>>Ethoxyquin Dimer

Ethoxyquin Dimer

(Synonyms: 乙氧基喹啉二聚体) 目录号 : GC46143

An antioxidant and metabolite of ethoxyquin

Ethoxyquin Dimer Chemical Structure

Cas No.:74681-77-9

规格 价格 库存 购买数量
1mg
¥1,696.00
现货
5mg
¥8,052.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Ethoxyquin dimer is an antioxidant and metabolite of ethoxyquin .1 It prevents oxidation of polyunsaturated fatty acids in fish meal and fish oil. Dietary administration of ethoxyquin dimer (0.1, 0.3, and 0.5% w/w) induces microvesicular steatosis and hepatocyte necrosis, as well as increases liver levels of oxidized glutathione and total lipids in mice.2

|1. Koning, A.J. A new method for measuring efficacies of antioxidants in fish meal. Int. J. Food Prop. 1(3), 255-261 (2009).|2. Bernhard, A., Rasinger, J.D., Wisl•ff, H., et al. Subchronic dietary exposure to ethoxyquin dimer induces microvesicular steatosis in male BALB/c mice. Food Chem. Toxicol. 118, 608-625 (2018).

Chemical Properties

Cas No. 74681-77-9 SDF
别名 乙氧基喹啉二聚体
Canonical SMILES CCOC1=CC=C2C(C(C)=CC(C)(C)N2C3=C4C(C(C)=CC(C)(C)N4)=CC(OCC)=C3)=C1
分子式 C28H36N2O2 分子量 432.6
溶解度 Chloroform: slightly soluble,Ethyl Acetate: slightly soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3116 mL 11.558 mL 23.116 mL
5 mM 0.4623 mL 2.3116 mL 4.6232 mL
10 mM 0.2312 mL 1.1558 mL 2.3116 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Subchronic dietary exposure to Ethoxyquin Dimer induces microvesicular steatosis in male BALB/c mice

Food Chem Toxicol 2018 Aug;118:608-625.PMID:29883783DOI:10.1016/j.fct.2018.06.005.

The use of the synthetic antioxidant ethoxyquin (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline; EQ) in animal feed results in the presence of EQ residues and metabolites, including the EQ dimer (1,8'-bi(6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline); EQDM) in animal food products. To investigate the toxicity and dose-response of dietary exposure to EQDM, male BALB/c mice were exposed to one of six dietary doses of EQDM, ranging from 0.015 to 518 mg/kg body weight/day for 90 days. Doses above 10 mg/kg body weight/day affected whole body lipid metabolism resulting in increased liver weights and decreased adipose tissue mass. Metabolomic screening of livers revealed alterations indicating incomplete fatty acid β-oxidation and hepatic oxidative stress. Histopathological evaluation and biochemical analyses of the liver confirmed the development of microvesicular steatosis and activation of the glutathione system. Hepatic protein profiling and pathway analyses suggested that EQDM-induced responses are mediated through activation of CAR/PXR nuclear receptors and induction of a NRF2-mediated oxidative stress response. Based on the development of microvesicular steatosis as the critical endpoint, a Reference Point for dietary EQDM exposure was established at 1.1 mg/kg body weight/day (BMDL10) from benchmark dose modelling. Applying an uncertainty factor of 200, an Acceptable Daily Intake of 0.006 mg EQDM/kg body weight was proposed.

Modelling of the feed-to-fillet transfer of ethoxyquin and one of its main metabolites, Ethoxyquin Dimer, to the fillet of farmed Atlantic salmon ( Salmon salar L.)

Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019 Jul;36(7):1042-1054.PMID:31063084DOI:10.1080/19440049.2019.1605208.

Ethoxyquin (EQ) is an antioxidant supplemented to feed ingredients, mainly fish meal, which is currently under re-evaluation for use in the food production chain. EQ is partly metabolized into several metabolites of which the Ethoxyquin Dimer (EQDM) accumulates most in the farmed fish fillet. In this study, the feed-to-fillet transfer of dietary EQ and EQDM in Atlantic salmon fillet was investigated, and a physiologically based pharmacokinetic (PBPK-) two-compartmental model was developed, based on experimental determined EQ and EQDM uptake, metabolism, and elimination kinetics. The model was verified with an external data-set and used to simulate the long term (>1.5 years) EQ and EQDM feed-to fillet transfer in Atlantic salmon under realistic farming conditions such as the seasonal fluctuations in feed intake, growth, and fillet fat deposition. The model predictions showed that initial EQDM levels in juvenile fish are the driving factor in final levels found in food-producing animals, while for EQ the levels in feed, and seasonal variations were the driving factor for food EQ levels.

Investigations on the metabolism and potentially adverse effects of Ethoxyquin Dimer, a major metabolite of the synthetic antioxidant ethoxyquin in salmon muscle

J Food Prot 2011 Sep;74(9):1574-80.PMID:21902931DOI:10.4315/0362-028X.JFP-10-547.

The feed additive ethoxyquin (EQ) is a commonly used synthetic antioxidant preservative in animal feeds. In farmed Atlantic salmon fillets, EQ residues are present, both as the parent compound and as EQ derivatives. One of the main EQ derivates in fish muscle is an Ethoxyquin Dimer (EQDM), and the potential toxicity of this metabolite is not known. The aim of this study was to evaluate the metabolism and potentially toxicological effects of EQDM. A 90-day subchronic exposure study with repeated dietary exposure to EQDM at 12.5 mg/kg of body weight per day was performed with male F344 rats. Hepatic Cyp1a1 mRNA was significantly reduced to <3% of the control in rats fed EQDM, and hepatic Cyp2b1 mRNA was increased to 192%. EQDM increased Gstpi1 mRNA expression to 144% that of the control, but the activity level of this phase II enzyme was reduced. Biomarkers of liver and kidney function did indicate adverse effects of EQDM when F344 rats were fed 12.5 mg/kg of body weight per day. The present study revealed that EQDM produces responses that are comparable to those produced by the parent compound (EQ) in terms of activating the same enzyme systems.

Simultaneous quantitative determination of the synthetic antioxidant ethoxyquin and its major metabolite in Atlantic salmon (Salmo salar, L), Ethoxyquin Dimer, by reversed-phase high-performance liquid chromatography with fluorescence detection

J AOAC Int 2007 Mar-Apr;90(2):587-97.PMID:17474529doi

A method for simultaneous quantitative determination of ethoxyquin (EQ) and its major metabolite in Atlantic salmon tissues, Ethoxyquin Dimer (EQ dimer), has been developed. The separation was achieved on tandem coupled phenyl-hexyl and C18 columns by 2-phase gradient elution with acetonitrile-ascorbic acid-acetic acid-diethyl amine organized in a 23.5 min sequence. Compounds were extracted with hexane from samples saponified in ethanol-NaOH and protected from air- and light-mediated oxidation by addition of saturated ethylenediaminetetraacetic acid, ascorbic acid, and pyrogallol. The identity of peaks was confirmed by spiking samples with standards verified by proton nuclear magnetic resonance spectrometry, mass spectrometry, and high-performance liquid chromatography. The detection limit (at 358/433 nm) of matrix-spiked EQ was 0.02 and 0.06 microg/L for EQ dimer, with 0.5 g sample weighed and resuspension in 0.5 mL hexane. Linearity was in the range of 0.2-175 microg/L for EQ and 0.3-5100 microg/L for EQ dimer. Two more ubiquitous compounds were identified as de-ethylated EQ and quinone imine. Totally, 14 peaks sharing spectral properties of EQ were separated in a single run, including a major peak present in all muscle samples, termed unknown metabolite of EQ (UMEQ). The concentrations of EQ, EQ dimer, and de-ethylated EQ, as well as concentrations of UMEQ (in arbitrary units), in the muscle were correlated to the amount of EQ fed to the salmon, thus indicating their possible metabolic origin. The pattern of 14 peaks in the muscle showed high specificity and could be used to discriminate between wild salmon and salmon fed EQ-supplemented feed. This method will be a useful tool for studying EQ metabolism and kinetics, and for the routine surveillance of residual levels of dietary EQ in farmed Atlantic salmon.

Safety and efficacy of a feed additive consisting of ethoxyquin (6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline) for all animal species (FEFANA asbl)

EFSA J 2022 Mar 3;20(3):e07166.PMID:35281649DOI:10.2903/j.efsa.2022.7166.

Ethoxyquin is synthetised from p-phenetidine, a possible mutagen, which remains in the additive as an impurity at concentrations of < 2.5 mg/kg additive. Ethoxyquin is considered safe for all animal species at the proposed inclusion level of 50 mg/kg complete feed. However, owing the presence of p-phenetidine, no safe level of the additive in feed for long-living and reproductive animals could be identified. The FEEDAP Panel derived a health-based guidance value of 0.006 mg Ethoxyquin Dimer (EQDM)/kg bw per day and applied it to the sum of ethoxyquin and its transformation products. A maximum total concentration of 50 mg ethoxyquin/kg complete feed for all animal species, except dairy ruminants, would not pose a risk for the consumer. However, in the absence of data on p-phenetidine residues in tissues and products of animal origin, no conclusion on the safety for the consumer could be drawn. The conclusions on consumer safety assume that the maximum total concentration of 50 mg EQ/kg feed is expressed as the sum of EQ, EQDM, EQI and DHEQ. Exposure of the unprotected user to p-phenetidine via inhalation should be minimised. No safety concerns for groundwater are expected. It is not possible to conclude on the safety of EQ for the terrestrial compartment. A risk for the aquatic compartment cannot be excluded when ethoxyquin is used in terrestrial animals. Unacceptable risk is not expected for freshwater sediment-dwelling organisms. A risk of secondary poisoning via the terrestrial food chain is not expected, whereas a risk via the aquatic food chain cannot be excluded. No concerns for aquatic organisms are expected for ethoxyquin used in fish farmed in land-based system, a risk cannot be excluded for marine sediment dwelling organisms when ethoxyquin is used in sea-cages. Ethoxyquin is considered efficacious in the range 25-50 mg/kg complete feed.