Home>>Peptides>>Exendin derivative 1

Exendin derivative 1 Sale

目录号 : GC34250

Exendinderivative1是由39个氨基酸组成的多肽。

Exendin derivative 1 Chemical Structure

规格 价格 库存 购买数量
1mg
¥982.00
现货
5mg
¥1,964.00
现货
10mg
¥3,124.00
现货
25mg
¥6,694.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Exendin derivative is a 39 amino acid peptide.

Chemical Properties

Cas No. SDF
Canonical SMILES His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-Leu-Met-Asn-Pro-Gln-Arg-Ser-Thr-Val-Trp-Tyr
分子式 C184H281N49O61S 分子量 4187.56
溶解度 Water : 50 mg/mL (11.94 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.2388 mL 1.194 mL 2.388 mL
5 mM 0.0478 mL 0.2388 mL 0.4776 mL
10 mM 0.0239 mL 0.1194 mL 0.2388 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from enteroendocrine cells in response to the presence of nutrients in the small intestines. These homones facilitate glucose regulation by stimulating insulin secretion in a glucose dependent manner while suppressing glucagon secretion. In patients with type 2 diabetes (T2DM), an impaired insulin response to GLP-1 and GIP contributes to hyperglycemia. Dipeptidyl peptidase-4 (DPP-4) inhibitors block the breakdown of GLP-1 and GIP to increase levels of the active hormones. In clinical trials, DPP-4 inhibitors have a modest impact on glycemic control. They are generally well-tolerated, weight neutral and do not increase the risk of hypoglycemia. GLP-1 receptor agonists (GLP-1 RA) are peptide derivatives of either exendin-4 or human GLP-1 designed to resist the activity of DPP-4 and therefore, have a prolonged half-life. In clinical trials, they have demonstrated superior efficacy to many oral antihyperglycemic drugs, improved weight loss and a low risk of hypoglycemia. However, GI adverse events, particularly nausea, vomiting, and diarrhea are seen. Both DPP-4 inhibitors and GLP-1 RAs have demonstrated safety in robust cardiovascular outcome trials, while several GLP-1 RAs have been shown to significantly reduce the risk of major adverse cardiovascular events in persons with T2DM with pre-existing cardiovascular disease (CVD). Several clinical trials have directly compared the efficacy and safety of DPP-4 inhibitors and GLP-1 RAs. These studies have generally demonstrated that the GLP-1 RA provided superior glycemic control and weight loss relative to the DPP-4 inhibitor. Both treatments were associated with a low and comparable incidence of hypoglycemia, but treatment with GLP-1 RAs were invariably associated with a higher incidence of GI adverse events. A few studies have evaluated switching patients from DPP-4 inhibitors to a GLP-1RA and, as expected, improved glycemic control and weight loss are seen following the switch. According to current clinical guidelines, GLP-1RA and DPP-4 inhibitors are both indicated for the glycemic management of patients with T2DM across the spectrum of disease. GLP-1RA may be preferred over DPP- 4 inhibitors for many patients because of the greater reductions in hemoglobin A1c and weight loss observed in the clinical trials. Among patients with preexisting CVD, GLP-1 receptor agonists with a proven cardiovascular benefit are indicated as add-on to metformin therapy.

Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity

The processing of proglucagon in intestinal L cells results in the formation of glucagon, GLP-1, and GLP-2. The GLP-1 molecule becomes active through the effect of proconvertase 1, and it is inactivated by dipeptidyl peptidase IV (DPP-IV), so that the half-life of endogenous GLP-1 is 2-3 min. GLP-1 stimulates insulin secretion from β cells in the islets of Langerhans. Human studies show that infusion of GLP-1 results in slowing of gastric emptying and increased fasting and postprandial gastric volumes. Retardation of gastric emptying reduces postprandial glycemia. Exendin-4 is a peptide agonist of the GLP-1 receptor that promotes insulin secretion. Chemical modifications of exendin-4 and GLP-1 molecules have been accomplished to prolong the half-life of GLP-1 agonists or analogs. This chapter reviews the effects of GLP-1-related drugs used in treatment of diabetes or obesity on gastric motor functions, chiefly gastric emptying. The literature shows that diverse methods have been used to measure effects of the GLP-1-related drugs on gastric emptying, with most studies using the acetaminophen absorption test which essentially measures gastric emptying of liquids during the first hour and capacity to absorb the drug over 4-6 h, expressed as AUC. The most valid measurements by scintigraphy (solids or liquids) and acetaminophen absorption at 30 or 60 min show that GLP-1-related drugs used in diabetes or obesity retard gastric emptying, and this is associated with reduced glycemia and variable effects on food intake and appetite. GLP-1 agonists and analogs are integral to the management of patients with type 2 diabetes mellitus and obesity. The effects on gastric emptying are reduced with long-acting preparations or long-term use of short-acting preparations as a result of tachyphylaxis. The dual agonists targeting GLP-1 and another receptor (GIP) do not retard gastric emptying, based on reports to date. In summary, GLP-1 agonists and analogs are integral to the management of patients with type 2 diabetes mellitus and obesity, and their effects are mediated, at least in part, by retardation of gastric emptying.

Development of an 111In-Labeled Glucagon-Like Peptide-1 Receptor-Targeting Exendin-4 Derivative that Exhibits Reduced Renal Uptake

Insulinomas are neuroendocrine tumors that are mainly found in the pancreas. Surgical resection is currently the first-line treatment for insulinomas; thus, it is vital to preoperatively determine their locations. The marked expression of the glucagon-like peptide-1 receptor (GLP-1R) is seen in pancreatic β-cells and almost all insulinomas. Radiolabeled derivatives of exendin-4, a GLP-1R agonist, have been used with nuclear medicine imaging techniques for the in vivo detection of the GLP-1R; however, their marked renal accumulation can hinder the imaging of pancreatic tail lesions. To develop a GLP-1R imaging probe that exhibits reduced renal accumulation, we designed and synthesized a straight-chain GLP-1R-targeting radioligand, [111In]In-E4DA1, which consisted of exendin-4, DOTADG (a chelator), and an (iodophenyl)butyric acid derivative (an albumin binder [ALB]). We performed preclinical evaluations of [111In]In-E4DA1 to investigate its utility as a GLP-1R imaging probe. [111In]In-E4DA1 and [111In]In-E4D (a control compound lacking the ALB moiety) were prepared by reacting the corresponding precursors with [111In]InCl3 in buffer. Cell-binding and human serum albumin (HSA)-binding assays were performed to assess the in vitro affinity of the molecules for INS-1 (GLP-1R-positive) cells and albumin, respectively. A biodistribution assay and single-photon emission computed tomography imaging were carried out using INS-1 tumor-bearing mice. In the cell-binding assay, [111In]In-E4DA1 and [111In]In-E4D exhibited in vitro binding to INS-1 cells. In the HSA-binding assay, [111In]In-E4DA1 bound to HSA, while [111In]In-E4D showed little HSA binding. The in vivo experiments involving INS-1 tumor-bearing mice revealed that the introduction of an ALB moiety into the DOTADG-based exendin-4 derivative markedly increased the molecule's tumor accumulation while decreasing its renal accumulation. In addition, [111In]In-E4DA1 exhibited greater tumor accumulation than renal accumulation, whereas previously reported radiolabeled exendin-4 derivatives demonstrated much higher accumulation in the kidneys than in tumors. These results indicate that [111In]In-E4DA1 may be a useful GLP-1R imaging probe, as it demonstrates only slight renal accumulation.

Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same?

Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are an important class of drugs with a well-established efficacy and safety profile in patients with type 2 diabetes mellitus. Agents in this class are derived from either exendin-4 (a compound present in Gila monster venom) or modifications of human GLP-1 active fragment. Differences among these drugs in duration of action (ie, short-acting vs long-acting), effects on glycaemic control and weight loss, immunogenicity, tolerability profiles, and administration routes offer physicians several options when selecting the most appropriate agent for individual patients. Patient preference is also an important consideration. The aim of this review is to discuss the differences between and similarities of GLP-1 RAs currently approved for clinical use, focusing particularly on the properties characterising the single short-acting and long-acting GLP-1 RAs rather than on their individual efficacy and safety profiles. The primary pharmacodynamic difference between short-acting (ie, exenatide twice daily and lixisenatide) and long-acting (ie, albiglutide, dulaglutide, exenatide once weekly, liraglutide, and semaglutide) GLP-1 RAs is that short-acting agents primarily delay gastric emptying (lowering postprandial glucose) and long-acting agents affect both fasting glucose (via enhanced glucose-dependent insulin secretion and reduced glucagon secretion in the fasting state) and postprandial glucose (via enhanced postprandial insulin secretion and inhibition of glucagon secretion). Other advantages of long-acting GLP-1 RAs include smaller fluctuations in plasma drug concentrations, improved gastrointestinal tolerability profiles, and simpler, more convenient administration schedules (once daily for liraglutide and once weekly for albiglutide, dulaglutide, the long-acting exenatide formulation, and semaglutide), which might improve treatment adherence and persistence.

The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke

Background: Preserving the integrity of the blood-brain barrier (BBB) is beneficial to avoid further brain damage after acute ischemic stroke (AIS). Astrocytes, an important component of the BBB, promote BBB breakdown in subjects with AIS by secreting inflammatory factors. The glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) protects the BBB and reduces brain inflammation from cerebral ischemia, and GLP-1R is expressed on astrocytes. However, the effect of Ex-4 on astrocytes in subjects with AIS remains unclear.
Methods: In the present study, we investigated the effect of Ex-4 on astrocytes cultured under oxygen-glucose deprivation (OGD) plus reoxygenation conditions and determined whether the effect influences bEnd.3 cells. We used various methods, including permeability assays, western blotting, immunofluorescence staining, and gelatin zymography, in vitro and in vivo.
Results: Ex-4 reduced OGD-induced astrocyte-derived vascular endothelial growth factor (VEGF-A), matrix metalloproteinase-9 (MMP-9), chemokine monocyte chemoattractant protein-1 (MCP-1), and chemokine C-X-C motif ligand 1 (CXCL-1). The reduction in astrocyte-derived VEGF-A and MMP-9 was related to the increased expression of tight junction proteins (TJPs) in bEnd.3 cells. Ex-4 improved neurologic deficit scores, reduced the infarct area, and ameliorated BBB breakdown as well as decreased astrocyte-derived VEGF-A, MMP-9, CXCL-1, and MCP-1 levels in ischemic brain tissues from rats subjected to middle cerebral artery occlusion. Ex-4 reduced the activation of the JAK2/STAT3 signaling pathway in astrocytes following OGD.
Conclusion: Based on these findings, ischemia-induced inflammation and BBB breakdown can be improved by Ex-4 through an astrocyte-dependent manner.