Fluo-4 AM
(Synonyms: Fluo-4 Acetoxymethyl ester) 目录号 : GC30231Fluo-4 AM 是一种常用的检测细胞内 Ca2+浓度的探针,检测波长为494/506 nm。
Cas No.:273221-67-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
本方案仅提供一个指导,请根据您的具体需要进行修改。
1.制备染色液
(1)配置储存液: 在无水DMSO中制备浓度为1-10mM的AM酯储存液。
注意:
② 未使用的储存液分装后在-20°C或-80°C避光保存,避免反复冻融;
②Fluo-4 AM易吸潮,冰箱取出后请在干燥的环境放至室温后再开封。开封前请将其短暂离心,以保证粉末落入管底。
(2)配置工作液:用合适的缓冲液(如:无血清和酚红的培养基或PBS)稀释储存液,配制浓度为1-10μM的工作液。
注意:
① Fluo-4 AM染色工作液制备时,需要往储存液中加入适量的20% Pluronic F-127溶液,以增强Fluo-4 AM的水溶性;
② Pluronic F-127可以防止Fluo-4 AM在溶液中聚集并促使探针更好进入细胞。但PluronicF-127可降低Fluo-4 AM的稳定性,因此只建议在配制工作液时加入,不建议加入储存液长期保存;
③配制20%(w/v) Pluronic F-127母液:称取100mg Pluronic F-127粉末(货号:GB30090),加入500μL DMSO,40-50℃加热20-30min,室温保存。如有结晶析出可重新加热溶解,不影响使用;
④(可选)GLPBIO提供溶解好的Pluronic F-127(20% Solution in DMSO) ,货号:GB30091;
⑤添加等体积20% Pluronic F-127溶液到储存液中,从而使Pluronic F-127的最终工作浓度约为0.02%;
⑥请根据实际情况调整工作液浓度,现用现配,避免反复冻融。
2.细胞悬浮染色
(1)悬浮细胞:经4°C、1000g离心3-5分钟,弃去上清液,使用PBS或其他缓冲液清洗两次,每次5分钟;
(2)贴壁细胞:使用PBS或其他缓冲液清洗两次,加入胰酶消化细胞,消化完成后经1000g离心3-5min;
(3)加入染料工作溶液重悬细胞,室温或低于室温条件下避光孵育20min-2h。不同细胞最佳孵育时间不同,请根据具体实验需求自行摸索;
注意:
①AM酯类染料在大部分细胞中的推荐工作浓度为4-5μM,具体使用浓度需根据实验要求进行优化。为了避免过度加载造成细胞毒性,建议在取得有效结果的基础上尽量使用最低探针浓度;
②(可选)如果细胞内含有机阴离子转运体,可能需要在细胞培养基中加入丙磺舒(GC16825,Probenecid,1-2.5mM)或磺吡酮(GC11049 ,Sulfinpyrazone,0.1-0.25mM),以降低去酯化探针的泄露水平。丙磺舒或磺吡酮储存液偏碱,因此加入培养基后需要重新调整pH;
③若使用含血清的培养基,血清内酯酶会降解AM,从而降低染料加载效果;而含酚红培养基会使本底值略偏高,建议加入染色工作液前,先用无指示剂培养基对细胞清洗2~3次;
④降低探针加载温度可能会降低探针的区室化现象。
(4)孵育结束后,经1000g离心5分钟,去除染色液,加入PBS或其他缓冲液清洗2-3次,去除残留探针;
(5)室温再孵育30min以保证细胞内AM的完全去酯化。
3.细胞贴壁染色
(1)在无菌盖玻片上培养贴壁细胞;
(2)从培养基中移走盖玻片,吸出过量的培养基,将盖玻片放在潮湿的环境中;
(3)从盖玻片的一角加入100μL的染料工作液,轻轻晃动使染料均匀覆盖所有细胞;
(4) 室温或低于室温条件下避光孵育20min-2h。不同细胞最佳孵育时间不同,请根据具体实验需求自行摸索;
(5)孵育结束后吸弃染料工作液,使用PBS或其他缓冲液清洗盖玻片2~3次;
(6)室温孵育30min。
4.显微镜检测:Fluo-4 AM的最大激发/发射波长为494/506 nm。
注意事项:
(1)在配置工作液时建议加入20% Pluronic F-127溶液,Pluronic F-127的加入可增加Fluo-4 AM在水溶液中的分散性。
(2)在细胞培养基中加入丙磺舒(GC16825,Probenecid,1-2.5mM)或磺吡酮(GC11049 ,Sulfinpyrazone,0.1-0.25mM),可降低Fluo-4 AM的泄露。丙磺舒或磺吡酮储存液偏碱,因此加入培养基后需要重新调整pH。
(3)Fluo-4 AM 容易吸潮,从冰箱取出后,请确认在干燥的环境放至室温后再开封。由于试剂微量,开封前请将其短暂离心,以保证粉末落入管底。
(4)Fluo-4 AM母液遇水极易分解,如果不能一次用完,建议分装保存,例如分装成5 μl/管,用封口膜封口,并用铝箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。
(5)
本方案仅提供一个指导,请根据您的具体需要进行修改。
1.制备染色液
(1)配置储存液: 在无水DMSO中制备浓度为1-10mM的AM酯储存液。
注意:
② 未使用的储存液分装后在-20°C或-80°C避光保存,避免反复冻融;
②Fluo-4 AM易吸潮,冰箱取出后请在干燥的环境放至室温后再开封。开封前请将其短暂离心,以保证粉末落入管底。
(2)配置工作液:用合适的缓冲液(如:无血清和酚红的培养基或PBS)稀释储存液,配制浓度为1-10μM的工作液。
注意:
① Fluo-4 AM染色工作液制备时,需要往储存液中加入适量的20% Pluronic F-127溶液,以增强Fluo-4 AM的水溶性;
② Pluronic F-127可以防止Fluo-4 AM在溶液中聚集并促使探针更好进入细胞。但PluronicF-127可降低Fluo-4 AM的稳定性,因此只建议在配制工作液时加入,不建议加入储存液长期保存;
③配制20%(w/v) Pluronic F-127母液:称取100mg Pluronic F-127粉末(货号:GB30090),加入500μL DMSO,40-50℃加热20-30min,室温保存。如有结晶析出可重新加热溶解,不影响使用;
④(可选)GLPBIO提供溶解好的Pluronic F-127(20% Solution in DMSO) ,货号:GB30091;
⑤添加等体积20% Pluronic F-127溶液到储存液中,从而使Pluronic F-127的最终工作浓度约为0.02%;
⑥请根据实际情况调整工作液浓度,现用现配,避免反复冻融。
2.细胞悬浮染色
(1)悬浮细胞:经4°C、1000g离心3-5分钟,弃去上清液,使用PBS或其他缓冲液清洗两次,每次5分钟;
(2)贴壁细胞:使用PBS或其他缓冲液清洗两次,加入胰酶消化细胞,消化完成后经1000g离心3-5min;
(3)加入染料工作溶液重悬细胞,室温或低于室温条件下避光孵育20min-2h。不同细胞最佳孵育时间不同,请根据具体实验需求自行摸索;
注意:
①AM酯类染料在大部分细胞中的推荐工作浓度为4-5μM,具体使用浓度需根据实验要求进行优化。为了避免过度加载造成细胞毒性,建议在取得有效结果的基础上尽量使用最低探针浓度;
②(可选)如果细胞内含有机阴离子转运体,可能需要在细胞培养基中加入丙磺舒(GC16825,Probenecid,1-2.5mM)或磺吡酮(GC11049 ,Sulfinpyrazone,0.1-0.25mM),以降低去酯化探针的泄露水平。丙磺舒或磺吡酮储存液偏碱,因此加入培养基后需要重新调整pH;
③若使用含血清的培养基,血清内酯酶会降解AM,从而降低染料加载效果;而含酚红培养基会使本底值略偏高,建议加入染色工作液前,先用无指示剂培养基对细胞清洗2~3次;
④降低探针加载温度可能会降低探针的区室化现象。
(4)孵育结束后,经1000g离心5分钟,去除染色液,加入PBS或其他缓冲液清洗2-3次,去除残留探针;
(5)室温再孵育30min以保证细胞内AM的完全去酯化。
3.细胞贴壁染色
(1)在无菌盖玻片上培养贴壁细胞;
(2)从培养基中移走盖玻片,吸出过量的培养基,将盖玻片放在潮湿的环境中;
(3)从盖玻片的一角加入100μL的染料工作液,轻轻晃动使染料均匀覆盖所有细胞;
(4) 室温或低于室温条件下避光孵育20min-2h。不同细胞最佳孵育时间不同,请根据具体实验需求自行摸索;
(5)孵育结束后吸弃染料工作液,使用PBS或其他缓冲液清洗盖玻片2~3次;
(6)室温孵育30min。
4.显微镜检测:Fluo-4 AM的最大激发/发射波长为494/506 nm。
注意事项:
(1)在配置工作液时建议加入20% Pluronic F-127溶液,Pluronic F-127的加入可增加Fluo-4 AM在水溶液中的分散性。
(2)在细胞培养基中加入丙磺舒(GC16825,Probenecid,1-2.5mM)或磺吡酮(GC11049 ,Sulfinpyrazone,0.1-0.25mM),可降低Fluo-4 AM的泄露。丙磺舒或磺吡酮储存液偏碱,因此加入培养基后需要重新调整pH。
(3)Fluo-4 AM 容易吸潮,从冰箱取出后,请确认在干燥的环境放至室温后再开封。由于试剂微量,开封前请将其短暂离心,以保证粉末落入管底。
(4)Fluo-4 AM母液遇水极易分解,如果不能一次用完,建议分装保存,例如分装成5 μl/管,用封口膜封口,并用铝箔纸包裹,放在一个密闭性能好的塑料袋中,并放入一包干燥剂,在≤-20℃密封避光保存。
(5)在正式实验前建议您先摸索一下细胞量、钙离子荧光探针的终浓度、培养时间等,找到合适的实验条件。
(6)荧光染料均存在淬灭问题,请尽量注意避光,以减缓荧光淬灭。
(7)在荧光孵育前,细胞应在无指示剂培养基中洗涤,以去除与细胞表面非特异性染料结合。
Fluo-4 AM is a commonly used probe for detecting intracellular Ca2+ concentration at a wavelength of 494/506 nm.
Fluo-4 is a calcium fluorescent probe that replaces Cl with F in the Fluo-3 structure. Due to the replacement of Cl with the more electronically attractive F, its excitation wavelength deviates by about 10 nm toward the short wavelength. This wavelength is closer to that of an argon laser, so the fluorescence intensity of Fluo-4 is twice as strong as that of Fluo-3 when excited with an argon laser.
Fluo-4 AM is a cell-permeable fluorescent Ca2+ indicator (Kd Ca2+ = 345 nM). Fluo-4 AM penetrates the cell membrane and enters the cell, then is sheared by intracellular esterase to form Fluo-4, which is retained in the cell. Fluo-4 is almost non-fluorescent when it exists in the form of free ligand, but when it combines with intracellular calcium ions, it can produce strong fluorescence, and the intensity of fluorescence is increased by nearly 100 times.
When heavy metals are present in solution (e.g. Mn2+, Zn2+, Pb2+) , the heavy metal-selective chelator TPEN (Catalog No. GC12918) can be used to control perturbations in calcium measurements caused by these ions. Fluo-4 AM is suitable for fluorescence and confocal microscopy, flow cytometric analysis, and microplate screening applications.
Fluo-4 AM 是一种常用的检测细胞内 Ca2+ 浓度的探针,检测波长为494/506 nm。
Fluo-4是一种将Fluo-3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的激发波长会向短波长处偏离10 nm左右。这个波长更接近于氩激光器的波长,所以用氩激光器激发时,Fluo-4的荧光强度比Fluo-3强一倍。
Fluo-4 AM是一种细胞渗透性荧光Ca2+指示剂(Kd Ca2+ = 345 nM)。 Fluo-4 AM穿透细胞膜进入细胞后被细胞内的酯酶剪切形成Fluo-4,从而被滞留在细胞内,Fluo-4若以游离配体形式存在时几乎是非荧光性的,但是当它与细胞内钙离子结合后可以产生较强的荧光,荧光强度增加近100 倍。
当溶液中存在重金属时(例如 Mn2+、Zn2+、Pb2+),可以使用重金属选择性螯合剂 TPEN (目录号:GC12918)来控制由这些离子引起的钙测量值扰动。Fluo-4 AM适用于荧光和共聚焦显微镜、流式细胞分析和微孔板筛选应用。
Cas No. | 273221-67-3 | SDF | |
别名 | Fluo-4 Acetoxymethyl ester | ||
Canonical SMILES | O=C(OCOC(C)=O)CN(C1=CC=C(C2=C3C=C(F)C(C=C3OC4=C2C=C(F)C(OCOC(C)=O)=C4)=O)C=C1OCCOC5=CC(C)=CC=C5N(CC(OCOC(C)=O)=O)CC(OCOC(C)=O)=O)CC(OCOC(C)=O)=O | ||
分子式 | C51H50F2N2O23 | 分子量 | 1096.94 |
溶解度 | Methanol: soluble | 储存条件 | Store at -20°C, protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 0.9116 mL | 4.5581 mL | 9.1163 mL |
5 mM | 0.1823 mL | 0.9116 mL | 1.8233 mL |
10 mM | 0.0912 mL | 0.4558 mL | 0.9116 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Staining the Cytoplasmic Ca2+ with Fluo-4/AM in Apple Pulp
Cytosolic Ca2+ plays a key role in plant development. Calcium imaging is the most versatile method to detect dynamic changes in Ca2+ in the cytoplasm. In this study, we obtained viable protoplasts of pulp cells by enzymatic hydrolysis. Isolated protoplasts were incubated with the small-molecule fluorescent reagent (Fluo-4/AM) for 30 min at 37 °C. The fluorescent probes successfully stained cytosolic Ca2+ but did not accumulate in vacuoles. La3+, a Ca2+ channel blocker, decreased cytoplasmic fluorescence intensity. These results suggest that Fluo-4/AM can be used to detect changes in cytosolic Ca2+ in the fruit flesh. In summary, we present a method to effectively isolate protoplasts from flesh cells of the fruit and detect Ca2+ by loading a small-molecule calcium fluorescent reagent in the cytoplasm of pulp cells.
Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis
Objective: Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators.
Methods: Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3'-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel.
Results: PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2.
Conclusion: PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.
Monitoring intracellular calcium ion dynamics in hair cell populations with Fluo-4 AM
We optimized Fluo-4 AM loading of chicken cochlea to report hair-bundle Ca(2+) signals in populations of hair cells. The bundle Ca(2+) signal reported the physiological state of the bundle and cell; extruding cells had very high bundle Fluo-4 fluorescence, cells with intact bundles and tip links had intermediate fluorescence, and damaged cells with broken tip links had low fluorescence. Moreover, Fluo-4 fluorescence in the bundle correlated with Ca(2+) entry through transduction channels; mechanically activating transduction channels increased the Fluo-4 signal, while breaking tip links with Ca(2+) chelators or blocking Ca(2+) entry through transduction channels each caused bundle and cell-body Fluo-4 fluorescence to decrease. These results show that when tip links break, bundle and soma Ca(2+) decrease, which could serve to stimulate the hair cell's tip-link regeneration process. Measurement of bundle Ca(2+) with Fluo-4 AM is therefore a simple method for assessing mechanotransduction in hair cells and permits an increased understanding of the interplay of tip links, transduction channels, and Ca(2+) signaling in the hair cell.
Reliable measurement of free Ca2+ concentrations in the ER lumen using Mag-Fluo-4
Synthetic Ca2+ indicators are widely used to report changes in free [Ca2+], usually in the cytosol but also within organelles. Mag-Fluo-4, loaded into the endoplasmic reticulum (ER) by incubating cells with Mag-Fluo-4 AM, has been used to measure changes in free [Ca2+] within the ER, where the free [Ca2+] is estimated to be between 100 μM and 1 mM. Many results are consistent with Mag-Fluo-4 reliably reporting changes in free [Ca2+] within the ER, but the results are difficult to reconcile with the affinity of Mag-Fluo-4 for Ca2+ measured in vitro (KDCa ?22 μM). Using an antibody to quench the fluorescence of indicator that leaked from the ER, we established that the affinity of Mag-Fluo-4 within the ER is much lower (KDCa ?1 mM) than that measured in vitro. We show that partially de-esterified Mag-Fluo-4 has reduced affinity for Ca2+, suggesting that incomplete de-esterification of Mag-Fluo-4 AM within the ER provides indicators with affinities for Ca2+ that are both appropriate for the ER lumen and capable of reporting a wide range of free [Ca2+].