FSB
目录号 : GC43700A fluorescent probe
Cas No.:760988-03-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
FSB is a fluorescent probe that has been used for the detection of amyloid plaques in human postmortem brain from patients with Alzheimer's disease and of curli amyloid fibers in E. coli biofilms. It has also been used to label tau inclusions in mouse and human brain sections and in mouse spinal cord following intravenous injection. FSB has excitation/emission maxima of 390/520 nm, respectively.
Cas No. | 760988-03-2 | SDF | |
Canonical SMILES | OC1=CC=C(/C=C/C2=CC(F)=C(/C=C/C3=CC(C(O)=O)=C(O)C=C3)C=C2)C=C1C(O)=O | ||
分子式 | C24H17FO6 | 分子量 | 420.4 |
溶解度 | DMSO: 200 mg/ml | 储存条件 | Store at -20°C, protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.3787 mL | 11.8934 mL | 23.7869 mL |
5 mM | 0.4757 mL | 2.3787 mL | 4.7574 mL |
10 mM | 0.2379 mL | 1.1893 mL | 2.3787 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Evaluation of Styrylbenzene analog- FSB and its affinity to bind parenchymal plaques and tangles in patients of Alzheimer's disease
Metab Brain Dis 2022 Mar;37(3):639-651.PMID:35064472DOI:10.1007/s11011-021-00885-3.
Although several histochemical markers for senile plaques (SP) and neurofibrillary tangles (NFTs) have been synthesized since the discovery of plaques in Alzheimer's disease (AD), only a handful of these markers stain both lesions in the human brain. Despite discovery of its ability to stain both SP and NFT over 13 years ago, the styrylbenzene derivative, (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), has only recently gained attention, primarily due to its ability to function as a contrasting agent for MRI imaging of AD pathology in vivo. The structure of the compound is a nuclide with quantized angular momentum, which explains its value as a contrast agent. In the current study, modification of the established staining procedure produced meaningful improvement in the labeling of plaques and tangles in the human brain. We utilized two rodent models of AD to show FSB's value in labeling both Aβ and tau lesions. Furthermore, our current modification allows us to detect SP in rodent brains in 15 min and both SP and NFT in human brains within 20 min. The study presents new evidence regarding potential binding targets for FSB as well as optimization protocols in which various parameters have been manipulated to show how section thickness, use of frozen versus paraffin-embedded sections, and selection of staining media can affect the intensity of the plaque and tangle staining in the brain. To determine the target FSB potentially binds, we performed double immunolabeling of FSB with mOC64 (a conformational antibody that label Aβ1-42). Results indicated that all plaques in the brain colocalized with mOC64, suggesting that FSB has the potential to bind all Aβ containing plaques, making it a very sensitive detector of multiple forms of SP... All antibodies were assessed for the degree of colocalization with FSB in order to better understand potential binding targets. We found more than 90% hyperphosphorylated Tau against AT8, AT180 and S214 colocalized with FSB labeled tangles. On the other hand, more than 90% of the mOC64 containing plaques colocalized with FSB stained plaques. Our results indicate that FSB is a valuable marker that can be used to detect AD pathologies in human and rodent brains with greater fluorescence intensity relative to other conventional fluorescence markers.
Synthesis and characterization of FSB@Fe3O4 composites and application in removal of indigo carmine dye from industrial wastewaters
Environ Sci Pollut Res Int 2021 Oct;28(39):54876-54890.PMID:34018116DOI:10.1007/s11356-021-14432-1.
The syntheses and characterization of fish scale biochar magnetic composites (FSB@Fe3O4) and their applications in the removal of indigo carmine dye from effluents are described. Preparation of the fish scale biochar magnetic composites, FSB@400 °C-Fe3O4, FSB@600 °C-Fe3O4, and FSB@800 °C-Fe3O4, was done following the chemical co-precipitation method. The adsorbents were characterized using peak optical absorbance, functional groups, magnetic strength, surface morphology, particle size, elemental compositions, surface charge, surface area, thermal stability, and crystalline phase, using ultraviolet-visible spectroscopy (UV-vis spec), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), transmission electron microscopy/scanning electron microscopy (TEM/SEM), energy dispersive X-ray (EDX), point of zero charge pH (pHpzc), Brunauer-Emmett-Teller (BET), thermo-gravimetric analysis (TGA), and powder x-ray diffraction (PXRD) techniques, correspondingly. The potential of magnetic composites for the abstraction of indigo carmine dye from wastewater was determined as a function of the initial concentration of indigo carmine dye, contact time, dye solution pH, adsorbent dosage, and solution temperature. The results demonstrated that the quantity (q) of indigo carmine dye adsorbed onto magnetic composites improved with a rise in initial dye concentration, adsorbent load, and solution temperature. Conversely, lower quantities of adsorbed dye were recorded at higher pH levels. The data fitted a pseudo-second-order kinetic model. The Langmuir isotherm gave the best fit (Langmuir>Freundlich>Redlich-Peterson>Toth>Hill>Sips>Temkin) suggesting a uniformly monolayer adsorption. Adsorption of environmental wastewater samples revealed that all the adsorbents can be used to effectively treat industrial wastewaters. The recycling data established that the adsorbents could be used for five consecutive cycles without significant loss of adsorption capacities.
The Congo red derivative FSB binds to curli amyloid fibers and specifically stains curliated E. coli
PLoS One 2018 Aug 30;13(8):e0203226.PMID:30161215DOI:10.1371/journal.pone.0203226.
The Congo red derivative (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB) specifically stains the functional amyloid curli in Escherichia coli biofilms. FSB binds to curli with similar affinity as Congo red, yet exhibits much greater fluorescence upon binding to curli as compared to Congo red and does not exhibit undesired binding to the cellulosic component of the biofilm. Thus, FSB presents a powerful tool to identify and visualize curli in E. coli biofilms and also enables new biophysical investigations of curli.
Development and evaluation of a novel beneficent antimicrobial bioscaffold based on animal waste-fish swim bladder (FSB) doped with silver nanoparticles
Environ Res 2020 Sep;188:109823.PMID:32604004DOI:10.1016/j.envres.2020.109823.
Treated fish wastes have found many applications in industry and medicine. Besides, nowadays low-cost scaffold with antimicrobial activity which can accelerates the process of wound healing is very demanding. In this study fish swim bladder (FSB), taken from Rutilus frisii, which is a disposable waste was doped with silver nanoparticles (AgNPs) and evaluated as antimicrobial wound dressing. The scanning electron microscopy (SEM) micrographs showed the presence of AgNPs on the scaffold. Histological observation confirmed cells and muscle removal from FSB and collagen preservation. There was significant antibacterial activity even in 50 ppm AgNPs concentration against pathogenic bacteria, swelling ratio was rather low, and cytotoxic assay revealed that the AgNPs-FSB scaffold had no toxic effect on human foreskin fibroblast (HFF) cells. Interestingly, despite the porous structure, the AgNPs-FSB scaffold was found to be a suitable barrier to microbial penetration even after 72 h. Further study showed the gradual release of AgNPs during 24 h. In conclusion, biofabricated FSB prepared in this study have appropriate characteristics notably encompassing a high quantity of collagen and broad-spectrum antimicrobial activity. Also, its porous structure made it suitable as a 3-D structure for the growth of cells and adding other antimicrobial nano-sized materials.
Isotope-labeling of the fibril binding compound FSB via a Pd-catalyzed double alkoxycarbonylation
J Org Chem 2012 Jun 15;77(12):5357-63.PMID:22612598DOI:10.1021/jo300746x.
We have synthesized two isotopically labeled variants of the β-amyloid binding compound FSB possessing (13)C-labels on the two terminal aryl carboxylic acid moieties. One of these was also fully deuterated on the olefinic spacers. The (13)C-isotope labeling was achieved applying a Pd-catalyzed methoxycarbonylation of the corresponding aryl chlorides with externally (ex situ) generated (13)C-labeled CO. Application of the Shirakawa-Hayashi protocol for the Pd-catalyzed reduction of a dialkyne intermediate using D(2)O allowed for the selective deuterium labeling of the two trans-C,C double bonds of FSB.