Home>>Signaling Pathways>> Proteases>> Farnesyl Transferase>>FTI-2153

FTI-2153 Sale

目录号 : GC60861

FTI-2153是一种有效、高度选择性的法尼基转移酶farnesyltransferase(FTase)抑制剂,IC50为1.4nM。FTI-2153有效抑制H-Ras蛋白的加工修饰,IC50值为10nM,是对其抑制活性是对Rap1A蛋白加工的3000多倍。

FTI-2153 Chemical Structure

Cas No.:344900-92-1

规格 价格 库存 购买数量
5mg
¥4,050.00
现货
10mg
¥7,200.00
现货
25mg
¥13,950.00
现货
50mg
¥21,150.00
现货
100mg
¥30,600.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

FTI-2153 is a potent and highly selective inhibitor of farnesyltransferase (FTase), with an IC50 of 1.4 nM. FTI-2153 is >3000-fold more potent at blocking H-Ras (IC50, 10 nM) than Rap1A processing. Anti-cancer activity[1].

[1]. Sun J, et al. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res. 1999 Oct 1;59(19):4919-26.

Chemical Properties

Cas No. 344900-92-1 SDF
Canonical SMILES CSCC[C@@H](C(OC)=O)NC(C1=CC=C(CNCC2=CN=CN2)C=C1C3=CC=CC=C3C)=O
分子式 C25H30N4O3S 分子量 466.6
溶解度 DMSO: 100 mg/mL (214.32 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1432 mL 10.7158 mL 21.4316 mL
5 mM 0.4286 mL 2.1432 mL 4.2863 mL
10 mM 0.2143 mL 1.0716 mL 2.1432 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The farnesyltransferase inhibitor, FTI-2153, inhibits bipolar spindle formation during mitosis independently of transformation and Ras and p53 mutation status

Cell Death Differ 2002 Jul;9(7):702-9.PMID:12058275DOI:10.1038/sj.cdd.4401023.

Recently, we have shown that the farnesyltransferase inhibitor FTI-2153 induces accumulation of two human lung cancer cell lines in mitosis by inhibiting bipolar spindle formation during prometaphase. Here we investigate whether this mitotic arrest depends on transformation, Ras and/or p53 mutation status. Using DAPI staining (DNA) and immunocytochemistry (microtubules), we demonstrate that in normal primary foreskin fibroblasts (HFF), as well as in several cancer cell lines of different origins including human ovarian (OVCAR3), lung (A-549 and Calu-1) and fibrosarcoma (HT1080), FTI-2153 inhibits bipolar spindle formation and induces a rosette morphology with a monopolar spindle surrounded by chromosomes. In both malignant cancer cell lines and normal primary fibroblasts, the percentage of prometaphase cells with bipolar spindles decreases from 67-92% in control cells to 2-28% in FTI-2153 treated cells. This inhibition of bipolar spindle formation correlates with an accumulation of cells in prometaphase. The ability of FTI-2153 to inhibit bipolar spindle formation is not dependent on p53 mutation status since both wild-type (HFF, HT1080 and A-549) and mutant (Calu-1 and OVCAR3) p53 cells were equally affected. Similarly, both wild-type (HFF and OVCAR3) and mutant (HT1080, Calu-1 and A-549) Ras cells accumulate monopolar spindles following treatment with FTI-2153. However, two cell lines, NIH3T3 (WT Ras and WT p53) and the human bladder cancer cell line, T-24 (mutant H-Ras and mutant p53) are highly resistant to FTI-2153 inhibition of bipolar spindle formation. Finally, the ability of FTI-2153 to inhibit tumor cell proliferation does not correlate with inhibition of bipolar spindle formation. Taken together these results demonstrate that the ability of FTI-2153 to inhibit bipolar spindle formation and accumulate cells in mitosis is not dependent on transformation, Ras or p53 mutation status. Furthermore, in some cell lines, FTIs inhibit growth by mechanisms other than interfering with the prophase/metaphase traverse.

The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells

J Biol Chem 2001 May 11;276(19):16161-7.PMID:11154688DOI:10.1074/jbc.M006213200.

Even though farnesyltransferase inhibitors (FTIs), a novel class of therapeutic agents presently in clinical trials, have preclinically outstanding anticancer activity and impressive lack of toxicity, their mechanism of action is not well understood. To enhance our understanding of how FTIs inhibit the growth of tumors, we have investigated their effects on cell cycle progression of two human lung cancer cell lines, A-549 and Calu-1. In this report, we show in synchronized A-549 and Calu-1 cells that FTI-2153 treatment resulted in a large accumulation of cells in the mitosis phase of the cell division cycle, with some cells in the G(0)/G(1) phase. Furthermore, microtubule immunostaining and 4,6-diamidino-2-phenylindole DNA staining demonstrated that the FTI-2153-induced accumulation in mitosis is due to the inability of these cells to progress from prophase to metaphase. FTI-2153 inhibited the ability of A-549 and Calu-1 cells to form bipolar spindles and caused formation of monoasteral spindles. Furthermore, FTI-2153 induced a ring-shaped chromosome morphology and inhibited chromosome alignment. Time-lapse videomicroscopy confirmed this result by showing that FTI-2153-treated cells are unable to align their chromosomes at the metaphase plate. FTI-2153 did not affect the localization to the kinetochores of two farnesylated centromeric proteins, CENP-E and CENP-F. Thus, a mechanism by which FTIs inhibit progression through mitosis and tumor growth is by blocking bipolar spindle formation and chromosome alignment.

Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine

Cancer Res 1999 Oct 1;59(19):4919-26.PMID:10519405doi

Ras malignant transformation requires posttranslational modification by farnesyltransferase (FTase). Here we report on the design and antitumor activity, in monotherapy as well as in combination therapy with cytotoxic agents, of a novel class of non-thiol-containing peptidomimetic inhibitors of FTase and the closely related family member geranylgeranyltransferase I (GGTase I). The non-thiol-containing FTI-2148 is highly selective for FTase (IC50, 1.4 nM) over GGTase I (IC50, 1700 nM), whereas GGTI-2154 is highly selective for GGTase I (21 nM) over FTase (IC50, 5600 nM). In whole cells, the corresponding methylester prodrug FTI-2153 is >3000-fold more potent at inhibiting H-Ras (IC50, 10 nM) than Rap1A processing, whereas GGTI-2166 is over 100-fold more selective at inhibiting Rap1A (IC50, 300 nM) over H-Ras processing. Furthermore, FTI-2153 was highly effective at suppressing oncogenic H-Ras constitutive activation of mitogen-activated protein kinase and human tumor growth in soft agar. FTI-2148 suppressed the growth of the human lung adenocarcinoma A-549 cells in nude mice by 33, 67, and 91% in a dose-dependent manner. Combination therapy of FTI-2148 with either cisplatin, gemcitabine, or Taxol resulted in a greater antitumor efficacy than monotherapy. GGTI-2154 in similar antitumor efficacy experiments is less potent than FTI-2148 and inhibits tumor growth by 9, 27, and 46%. Combination therapy of GGTI-2154 with cisplatin, gemcitabine, or Taxol is also more effective. Finally, FTI-2148 and GGTI-2154 are 30- and 33-fold more selective and 30- and 16-fold more potent in whole cells than our previously reported thiol-containing FTI-276 and GGTI-297, respectively. Thus, our results demonstrate that this highly potent and selective novel class of non-thiol-containing peptidomimetics inhibits human tumor growth in whole animals and that combination therapy with cytotoxic agents is more beneficial than monotherapy.

Combination of farnesyltransferase and Akt inhibitors is synergistic in breast cancer cells and causes significant breast tumor regression in ErbB2 transgenic mice

Clin Cancer Res 2011 May 1;17(9):2852-62.PMID:21536547DOI:10.1158/1078-0432.CCR-10-2544.

The Akt activation inhibitor triciribine and the farnesyltransferase inhibitor tipifarnib have modest to little activity in clinical trials when used as single agents. In this article, preclinical data show that the combination is more effective than single agents both in cultured cells and in vivo. Combination index data analysis shows that this combination is highly synergistic at inhibiting anchorage-dependent growth of breast cancer cells. This synergistic interaction is also observed with structurally unrelated inhibitors of Akt (MK-2206) and farnesyltransferase (FTI-2153). The triciribine/tipifarnib synergistic effects are seen with several cancer cell lines including those from breast, leukemia, multiple myeloma and lung tumors with different genetic alterations such as K-Ras, B-Raf, PI3K (phosphoinositide 3-kinase), p53 and pRb mutations, PTEN, pRB and Ink4a deletions, and ErbB receptor overexpression. Furthermore, the combination is synergistic at inhibiting anchorage-independent growth and at inducing apoptosis in breast cancer cells. The combination is also more effective at inhibiting the Akt/mTOR/S6 kinase pathway. In an ErbB2-driven breast tumor transgenic mouse model, the combination, but not single agent, treatment with triciribine and tipifarnib induces significant breast tumor regression. Our findings warrant further investigation of the combination of farnesyltransferase and Akt inhibitors.

Tipifarnib-induced apoptosis in acute myeloid leukemia and multiple myeloma cells depends on Ca2+ influx through plasma membrane Ca2+ channels

J Pharmacol Exp Ther 2011 Jun;337(3):636-43.PMID:21378206DOI:10.1124/jpet.110.172809.

A major contributing factor to the high mortality rate associated with acute myeloid leukemia and multiple myeloma is the development of resistance to chemotherapy. We have shown that the combination of tipifarnib, a nonpeptidomimetic farnesyltransferase inhibitor (FTI), with bortezomib, a proteosome inhibitor, promotes synergistic death and overcomes de novo drug resistance in acute myeloid leukemia cell lines. Experiments were undertaken to identify the molecular mechanisms by which tipifarnib produces cell death in acute myeloid leukemia and multiple myeloma cell lines (U937 and 8226, respectively). Tipifarnib, but not other FTIs tested [N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-phenylbenzoyl]methionine methyl ester trifluoroacetate salt (FTI-277) and 2'-methyl-5-((((1-trityl-1H-imidazol-4-yl)methyl)amino)methyl)-[1,1'-biphenyl]-2-carboxylic acid (FTI-2153), promotes elevations in intracellular free-calcium concentrations ([Ca(2+)](i)) in both cell lines. These elevations in [Ca(2+)](i) were accompanied by highly dynamic plasmalemmal blebbing and frequently resulted in membrane lysis. The tipifarnib-induced elevations in [Ca(2+)](i) were not blocked by thapsigargin or ruthenium red, but were inhibited by application of Ca(2+)-free extracellular solution and by the Ca(2+) channel blockers Gd(3+) and La(3+). Conversely, 2-aminoethoxydiphenyl borate (2-APB) potentiated the tipifarnib-evoked [Ca(2+)](i) overload. Preventing Ca(2+) influx diminished tipifarnib-evoked cell death, whereas 2-APB potentiated this effect, demonstrating a link between tipifarnib-induced Ca(2+) influx and apoptosis. These data suggest that tipifarnib exerts its effects by acting on a membrane channel with pharmacological properties consistent with store-operated channels containing the Orai3 subunit. It is noteworthy that Orai3 transcripts were found to be expressed at lower levels in tipifarnib-resistant 8226/R5 cells. Our results indicate tipifarnib causes cell death via a novel mechanism involving activation of a plasma membrane Ca(2+) channel and intracellular Ca(2+) overload.