Galanthamine N-Oxide
(Synonyms: 加兰他明 N-氧化物) 目录号 : GC64492Galanthamine N-Oxide 是一种生物碱,分离于 Zephyranthes concolor 的球茎中。Galanthamine N-Oxide 抑制电鳗乙酰胆碱酯酶 (AChE),EC50 为 26.2 μM。Galanthamine N-Oxide 是TcAChE,hAChE 和 hBChE 酶活性位点中底物调节的显著抑制剂。
Cas No.:134332-50-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Galanthamine N-Oxide is an alkaloid obtained from the bulbs of Zephyranthes concolor. Galanthamine N-Oxide inhibits electric eel acetylcholinesterase (AChE) with an EC50 of 26.2 μM. Galanthamine N-Oxide is a prominent inhibitor of substrate accommodation in the active site of the Torpedo californica AChE (TcAChE), hAChE and hBChE enzymes[1][2].
[1]. Reyes-Chilpa R, et al. Acetylcholinesterase-inhibiting alkaloids from Zephyranthes concolor. Molecules. 2011 Nov 15;16(11):9520-33.
Cas No. | 134332-50-6 | SDF | Download SDF |
别名 | 加兰他明 N-氧化物 | ||
分子式 | C17H21NO4 | 分子量 | 303.35 |
溶解度 | DMSO : 6.25 mg/mL (20.60 mM; ultrasonic and warming and heat to 60°C) | 储存条件 | 4°C, away from moisture and light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.2965 mL | 16.4826 mL | 32.9652 mL |
5 mM | 0.6593 mL | 3.2965 mL | 6.593 mL |
10 mM | 0.3297 mL | 1.6483 mL | 3.2965 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Acetylcholinesterase-inhibiting alkaloids from Zephyranthes concolor
Molecules 2011 Nov 15;16(11):9520-33.PMID:22086403DOI:10.3390/molecules16119520.
The bulbs and aerial parts of Zephyranthes concolor (Lindl.) Benth. & Hook. f. (Amaryllidaceae), an endemic species to Mexico, were found to contain the alkaloids chlidanthine, galanthamine, Galanthamine N-Oxide, lycorine, galwesine, and epinorgalanthamine. Since currently only partial and low resolution (1)H-NMR data for chlidanthine acetate are available, and none for chlidanthine, its 1D and 2D high resolution (1)H- and (13)C-NMR spectra were recorded. Unambiguous assignations were achieved with HMBC, and HSQC experiments, and its structure was corroborated by X-ray diffraction. Minimum energy conformation for structures of chlidanthine, and its positional isomer galanthamine, were calculated by molecular modelling. Galanthamine is a well known acetylcholinesterase inhibitor; therefore, the isolated alkaloids were tested for this activity. Chlidanthine and Galanthamine N-Oxide inhibited electric eel acetylcholinesterase (2.4 and 2.6 × 10(-5) M, respectively), indicating they are about five times less potent than galanthamine, while galwesine was inactive at 10(-3) M. Inhibitory activity of HIV-1 replication, and cytotoxicity of the isolated alkaloids were evaluated in human MT-4 cells; however, the alkaloids showed poor activity as compared with standard anti-HIV drugs, but most of them were not cytotoxic.
Alkaloids of Amaryllidaceae as Inhibitors of Cholinesterases (AChEs and BChEs): An Integrated Bioguided Study
Phytochem Anal 2018 Mar;29(2):217-227.PMID:29044771DOI:10.1002/pca.2736.
Introduction: Enzymatic inhibition of acetylcholinesterase (AChE) is an essential therapeutic target for the treatment of Alzheimer's disease (AD) and AChE inhibitors are the first-line drugs for it treatment. However, butyrylcholinesterase (BChE), contributes critically to cholinergic dysfunction associated with AD. Thus, the development of novel therapeutics may involve the inhibition of both cholinesterase enzymes. Objective: To evaluate, in an integrated bioguided study, cholinesterases alkaloidal inhibitors of Amaryllidaceae species. Methodology: The proposed method combines high-performance thin-layer chromatography (HPTLC) with data analysis by densitometry, enzymatic bioautography with different AChEs and BChEs, the detection of bioactive molecules through gas chromatography mass spectrometry (GC-MS) analysis of spots of interest, and theoretical in silico studies. Results: To evaluate the bioguided method, the AChE and BChE inhibitory activities of seven Amaryllidaceae plant extracts were evaluated. The alkaloid extracts of Eucharis bonplandii exhibited a high level of inhibitory activity (IC50 = 0.72 ± 0.05 μg/mL) against human recombinant AChE (hAChE). Regarding human serum BChE (hBChE), the bulb and leaf extracts of Crinum jagus had the highest activity (IC50 = 8.51 ± 0.56 μg/mL and 11.04 ± 1.21 μg/mL, respectively). In the HPTLC spots with high inhibitory activity, several alkaloids were detected using GC-MS, and some of these alkaloids were identified. Galanthamine, Galanthamine N-Oxide and powelline should be the most prominent inhibitors of substrate accommodation in the active site of the Torpedo californica AChE (TcAChE), hAChE and hBChE enzymes. Conclusions: These results are evidence of the chemical relevance of the Colombian's Amaryllidaceae species for the inhibition of cholinesterases and as potent sources for the palliative treatment of AD. Copyright © 2017 John Wiley & Sons, Ltd.