Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>5,6-Dihydro-5-methyluracil

5,6-Dihydro-5-methyluracil Sale

(Synonyms: 二氢胸腺嘧啶,Dihydrothymine) 目录号 : GC35152

Dihydrothymine is an intermediate breakdown product of thymine.

5,6-Dihydro-5-methyluracil Chemical Structure

Cas No.:696-04-8

规格 价格 库存 购买数量
50mg
¥450.00
现货
100mg
¥585.00
现货
250mg
¥810.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Dihydrothymine is an intermediate breakdown product of thymine.

Chemical Properties

Cas No. 696-04-8 SDF
别名 二氢胸腺嘧啶,Dihydrothymine
Canonical SMILES O=C1NC(C(C)CN1)=O
分子式 C5H8N2O2 分子量 128.13
溶解度 DMSO : 62.5 mg/mL (487.79 mM; ultrasonic and warming and heat to 60°C) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.8046 mL 39.0229 mL 78.0457 mL
5 mM 1.5609 mL 7.8046 mL 15.6091 mL
10 mM 0.7805 mL 3.9023 mL 7.8046 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning

Comput Biol Med 2022 Jul;146:105659.PMID:35751188DOI:PMC9123826

Objective: To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diagnosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. Material and methods: Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (acute, severe and fatal illness) from two independent hospitals in China were analyzed by LC-MS. Samples from healthy volunteers and from patients with pneumonia caused by other viruses (i.e. negative RT-PCR for COVID-19) were used as controls. Seven different ML-based models were built: PLS-DA, ANNDA, XGBoostDA, SIMCA, SVM, LREG and KNN. Results: The PLS-DA model presented the best performance for both datasets, with accuracy rates to predict the diagnosis, severity and fatality of COVID-19 of 93%, 94% and 97%, respectively. Low levels of the metabolites ribothymidine, 4-hydroxyphenylacetoylcarnitine and uridine were associated with COVID-19 positivity, whereas high levels of N-acetyl-glucosamine-1-phosphate, cysteinylglycine, methyl isobutyrate, l-ornithine and 5,6-Dihydro-5-methyluracil were significantly related to greater severity and fatality from COVID-19. Conclusion: The PLS-DA model can help to predict SARS-CoV-2 diagnosis, severity and fatality in daily practice. Some biomarkers typically increased in COVID-19 patients' serum or plasma (i.e. ribothymidine, N-acetyl-glucosamine-1-phosphate, l-ornithine, 5,6-Dihydro-5-methyluracil) should be further evaluated as prognostic indicators of the disease.