Home>>Peptides>>Calmodulin-Dependent Protein Kinase II 281-309

Calmodulin-Dependent Protein Kinase II 281-309 Sale

目录号 : GC35595

Calmodulin-Dependent Protein Kinase II (281-309) 是钙/钙调素依赖蛋白激酶 II (CaM kinase II) 多肽片段。

Calmodulin-Dependent Protein Kinase II 281-309 Chemical Structure

Cas No.:116826-37-0

规格 价格 库存 购买数量
1mg 待询 待询
5mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Calmodulin-Dependent Protein Kinase II (281-309) is a peptide of calcium/calmodulin-dependent protein kinase II (CaM-kinase II)[1].

[1]. Chae YJ, et al. Block of Kv4.3 potassium channel by trifluoperazine independent of CaMKII. Neurosci Lett. 2014 Aug 22;578:159-64.

Chemical Properties

Cas No. 116826-37-0 SDF
分子式 C146H254N46O39S3 分子量 3374.06
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.2964 mL 1.4819 mL 2.9638 mL
5 mM 0.0593 mL 0.2964 mL 0.5928 mL
10 mM 0.0296 mL 0.1482 mL 0.2964 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Regulatory domain of calcium/calmodulin-dependent protein kinase II. Mechanism of inhibition and regulation by phosphorylation

J Biol Chem 1989 Mar 25;264(9):4800-4.PMID:2538462doi

Regulatory mechanisms of rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) were probed using a synthetic peptide (CaMK-(281-309] corresponding to residues 281-309 (alpha-subunit) which contained the calmodulin (CaM)-binding and inhibitory domains and also the initial autophosphorylation site (Thr286). Kinetic analyses indicated that inhibition of a completely Ca2+/CaM-independent form of CaM-kinase II by CaMK-(281-309) was noncompetitive with respect to peptide substrate (syntide-2) but was competitive with respect to ATP. Interaction of CaMK-(281-309) with the ATP-binding site was independently confirmed since inactivation of proteolyzed CaM-kinase II by phenylglyoxal (t1/2 = 7 min) was blocked by ATP analog plus Mg2+ or by CaMK-(281-309). In the presence of Ca2+/CaM, CaMK-(281-309) no longer protected against phenylglyoxal inactivation, consistent with our previous observations (Colbran, R.J., Fong, Y.-L., Schworer, C.M., and Soderling, T.R. (1988) J. Biol. Chem. 263, 18145-18151) that binding of Ca2+/CaM to CaMK-(281-309) 1) blocks its inhibitory property, and 2) enhances its phosphorylation at Thr 286. The present study also showed that phosphorylation of CaMK-(281-309) decreased its inhibitory potency at least 10-fold without affecting its Ca2+/CaM-binding ability. Thus, CaM-kinase II is inactive in the absence of Ca2+/CaM because an inhibitory domain within residues 281-309 interacts with the catalytic domain and blocks ATP binding. Autophosphorylation of Thr286 results in a Ca2+/CaM-independent form of the kinase by disrupting the inhibitory interaction with the catalytic domain.

Stabilization of calmodulin-dependent protein kinase II through the autoinhibitory domain

J Biol Chem 1995 Feb 3;270(5):2163-70.PMID:7836445DOI:10.1074/jbc.270.5.2163.

The active 30-kDa chymotryptic fragment of calmodulin-dependent protein kinase II (CaM kinase II), devoid of the autoinhibitory domain, and the enzyme, autothiophosphorylated at Thr286/Thr287, were much more labile than was the original native enzyme. They were markedly stabilized by synthetic peptides, designed after the sequence around the autophosphorylation site in the autoinhibitory domain, such as autocamtide-2 and CaMK-(281-309), but such marked stabilizations were not observed with the ordinary exogenous substrates, such as syntide-2. These results suggest that the autoinhibitory domain of CaM kinase II plays a crucial role in stabilizing the enzyme. A nonphosphorylatable analog of autocamtide-2, AIP, strongly inhibited the activity of the 30-kDa fragment. Kinetic analysis revealed that the inhibition by AIP was competitive with respect to autocamtide-2 and CaMK-(281-289) and noncompetitive with respect to syntide-2 and ATP/Mg2+, suggesting that CaM kinase II possesses at least two distinct substrate-binding sites; one for ordinary exogenous substrates such as syntide-2 and the other for an endogenous substrate, the autophosphorylation site (Thr286/Thr287) in the autoinhibitory domain. Fluorescence analysis of the binding of 7-nitrobenz-2-oxa-1,3-diazole-4-yl labeled AIP to the 30-kDa fragment also supported this contention. Thus, the autoinhibitory domain appears to play a crucial role in keeping the enzyme stable by binding to the substrate-binding site for the autophosphorylation site.

Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II

J Biol Chem 1988 Dec 5;263(34):18145-51.PMID:2848027doi

Two peptide analogs of Ca2+/calmodulin-dependent protein kinase II (CaMK-(peptides)) were synthesized and used to probe interactions of the various regulatory domains of the kinase. CaMK-(281-289) contained only Thr286, the major Ca2+-dependent autophosphorylation site of the kinase (Schworer, C. M., Colbran, R. J., Keefer, J. R. & Soderling, T. R. (1988) J. Biol. Chem. 263, 13486-13489), whereas CaMK-(281-309) contained Thr286 together with the previously identified calmodulin binding and inhibitory domains (Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R. & Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195). CaMK-(281-309), but not CaMK-(281-289), bound calmodulin and was a potent inhibitor (IC50 = 0.88 +/- 0.7 microM using 20 microM syntide-2) of exogenous substrate (syntide-2 or glycogen synthase) phosphorylation by a completely Ca2+/calmodulin-independent form of the kinase generated by limited proteolysis with chymotrypsin. This inhibition was completely relieved by the inclusion of Ca2+/calmodulin in excess of CaMK-(281-309) in the assays. CaMK-(281-289) was a good substrate (Km = 11 microM; Vmax = 3.15 mumol/min/mg) for the proteolyzed kinase whereas phosphorylation of CaMK-(281-309) showed nonlinear Michaelis-Menton kinetics, with maximal phosphorylation (0.1 mumol/min/mg) at 20 microM and decreased phosphorylation at higher concentrations. The addition of Ca2+/calmodulin to assays stimulated the phosphorylation of CaMK-(281-309) by the proteolyzed kinase approximately 10-fold but did not affect the phosphorylation of CaMK-(281-289). A model for the regulation of Ca2+/calmodulin-dependent protein kinase II is proposed based on the above observations and results from other laboratories.

Specificities of autoinhibitory domain peptides for four protein kinases. Implications for intact cell studies of protein kinase function

J Biol Chem 1990 Feb 5;265(4):1837-40.PMID:2153665doi

Synthetic peptides corresponding to the autoinhibitory domains of calcium/calmodulin-dependent protein kinase II (CaMK-(281-309)), smooth muscle myosin light chain kinase (MLCK-(480-501)), and protein kinase C (PKC-(19-36)) as well as a peptide derived from the heat-stable inhibitor of cAMP-dependent protein kinase (PKI-tide) were tested for their inhibitory specificities. The inhibitory potencies of the four peptides were determined for each of the four protein kinases using both peptide substrates (at approximate Km concentrations) and protein substrates (at concentrations less than Km). In agreement with previous studies PKI-tide was a specific and potent inhibitor of only cAMP kinase, and none of the other inhibitory peptides gave significant inhibition of cAMP kinase at concentrations of less than 100 microM. With synthetic peptide substrates, PKC-(19-36) strongly inhibited native PKC (IC50 less than 1 microM) but also significantly inhibited autophosphorylated CaMK-II (IC50 = 30 microM) and proteolytically activated MLCK (IC50 = 35 microM). MLCK-(480-501) potently inhibited MLCK (IC50 = 0.25 microM) and also strongly inhibited both PKC and CaMK-II (IC50 = 1.4 and 1.7 microM, respectively). CaMK-(281-309) inhibited autophosphorylated CaMK-II, PKC, and proteolyzed MLCK almost equally (IC50 = 10, 38, and 48 microM, respectively). Qualitatively similar results were obtained with protein substrates. These studies validate the use of PKI-tide as a specific inhibitor of cAMP kinase in intact cell studies and suggest that PKC-(19-36) can also be used but only within a narrow concentration range. However, the autoinhibitory domain peptides from MLCK and CaMK-II are not sufficiently specific to be used in similar investigations.