D-Glucose 6-Phosphate~1 M in H2O(260 mg/ml)
(Synonyms: D-葡萄糖-6-磷酸) 目录号 : GC35852D-Glucose 6-Phosphate是葡萄糖经过磷酸化(在第6号碳的羟基上)生成的葡萄糖。
Cas No.:56-73-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Glucose 6-Phosphate is glucose produced by phosphorylation of glucose (on the hydroxyl group of carbon 6) [1]. D-Glucose 6-Phosphate is a common molecule in cells, most glucose entering cells is phosphorylated in this way, and it is located at the starting point of two major metabolic pathways: glycolysis and the pentose phosphate pathway [2]. D-Glucose 6-Phosphate can also be converted into glycogen or starch and stored in cells [3]. D-Glucose 6-Phosphate can be used as a substrate to measure recombinant mannitol-1-phosphatase (M1Pase) activity[4]. This product is in the form of an aqueous solution with a concentration of 1 M (260 mg/ml).
References:
[1]Olsen B B, Gjedde A, Vilstrup M H, et al. Linked hexokinase and glucose-6-phosphatase activities reflect grade of ovarian malignancy[J]. Molecular Imaging and Biology, 2019, 21: 375-381.
[2]Litwack, Gerald .Chapter 6-Insulin and Sugars.Human Biochemistry. Academic Press.2018:131-160.
[3]Lal M A. Metabolism of storage carbohydrates[J]. Plant physiology, development and metabolism. Springer Nature, Singapore. Doi, 2018, 10: 978-981.
[4] Groisillier A, Tonon T. Determination of Recombinant Mannitol-1-phosphatase Activity from Ectocarpus sp[J]. Bio-protocol, 2016, 6(16): e1896-e1896.
D-Glucose 6-Phosphate是葡萄糖经过磷酸化(在第6号碳的羟基上)生成的葡萄糖[1]。D-Glucose 6-Phosphate是细胞中的常见分子,进入细胞的大部分葡萄糖都会以这种方式被磷酸化,它位于两个主要代谢途径的起点:糖酵解和磷酸戊糖途径[2]。D-Glucose 6-Phosphate还可以转化为糖原或淀粉储存在细胞中[3]。D-Glucose 6-Phosphate可作为底物用于测定重组甘露醇-1-磷酸酶(M1Pase)活性[4]。本产品是水溶液的形式,浓度为1 M(260 mg/ml)。
Cas No. | 56-73-5 | SDF | |
别名 | D-葡萄糖-6-磷酸 | ||
Canonical SMILES | O=C[C@@H]([C@H]([C@@H]([C@@H](COP(O)(O)=O)O)O)O)O | ||
分子式 | C6H13O9P | 分子量 | 260.14 |
溶解度 | Water: ≥ 33.33 mg/mL (128.12 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.8441 mL | 19.2204 mL | 38.4408 mL |
5 mM | 0.7688 mL | 3.8441 mL | 7.6882 mL |
10 mM | 0.3844 mL | 1.922 mL | 3.8441 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Phosphonate and α-Fluorophosphonate Analogues of D-Glucose 6-Phosphate as Active-Site Probes of 1l- myo-Inositol 1-Phosphate Synthase
Biochemistry 2022 May 17;61(10):868-878.PMID:35467843DOI:10.1021/acs.biochem.2c00064.
The biosynthesis of myo-inositol (mI) is central to the function of many organisms across all kingdoms of life. The first and rate-limiting step in this pathway is catalyzed by 1l-myo-inositol 1-phosphate synthase (mIPS), which converts D-Glucose 6-Phosphate (G6P) into 1l-myo-inositol 1-phosphate (mI1P). Extensive studies have shown that this reaction occurs through a stepwise NAD+-dependent redox aldol cyclization mechanism producing enantiomerically pure mI1P. Although the stereochemical nature of the mechanism has been elucidated, there is a lack of understanding of the importance of amino acid residues in the active site. Crystal structures of mIPS in the ternary complex with substrate analogues and NAD(H) show different ligand orientations. We therefore proposed to use isosteric and isoelectronic analogues of G6P to probe the active site. Here, we report the synthesis of the methylenephosphonate, difluoromethylenephosphonate, and (R)- and (S)-monofluoromethylenephosphonate analogues of G6P and their evaluation as inhibitors of mIPS activity. While the CH2 and CF2 analogues were produced with slight modification of a previously described route, the CHF analogues were synthesized through a new, shorter pathway. Kinetic behavior shows that all compounds are reversible competitive inhibitors with respect to G6P, with Ki values in the order CF2 (0.18 mM) < (S)-CHF (0.24 mM) < (R)-CHF (0.59 mM) < CH2 (1.2 mM). Docking studies of these phosphonates using published crystal structures show that substitution of the oxygen atom of the substrate changes the conformation of the resulting inhibitors, altering the position of carbon-6 and carbon-5, and this change is more pronounced with fluorine substitution.