D-Lin-MC3-DMA
(Synonyms: 4-(N,N-二甲基氨基)丁酸(二亚油基)甲酯) 目录号 : GC35879Dilinoleylmethyl-4-dimethylaminobutyrate (D-Lin-MC3-DMA) 是有效的体内 siRNA 递送载体。
Cas No.:1224606-06-7
Sample solution is provided at 25 µL, 10mM.
Dilinoleylmethyl-4-dimethylaminobutyrate (D-Lin-MC3-DMA) are potent siRNA delivery vehicles in vivo[1].
D-Lin-MC3-DMA is an effective carrier for delivering siRNA in HeLa cells[1]. Differences in gene silencing in two distinct liver cell populations when siRNA was delivered with LNPs containing the ionizable cationic lipid MC3(D-Lin-MC3-DMA) or ALC-0315[1]. D-Lin-MC3-DMA, which is practically uncharged at physiological pH, can become ionized once endocytosed and entrained in the early endosome compartment. Because these early endosomes are expected to contain negatively charged phosphatidylserine lipids, one may speculate that the LNP cargo might escape by LNPs adhering to and fusing with the early endosomal membrane through electrostatic means[5,6]. D-Lin-MC3-DMA -LNPs were close to neutral charge with a zeta-potential of 5±3 mV. While D-Lin-MC3-DMA -LNPs are neutrally charged at physiological pH, they are known to be positively charged at endosomal pH[7]. LNPs were synthesized by the microfluidic mixing technique and are composed of ionizable cationic lipid (D-Lin-MC3-DMA), a phospholipid, cholesterol, and poly(ethylene glycol) (PEG), as well as encapsulated cargoes that are either phosphorothioated siRNA (50 or 100%) or mRNA. LNPs form physically stable complexes with bioactive drug siRNA for a period of 94 days[8].
In the murine FVII model, an ED50 of 0.005 mg kg 1 siRNA was achieved in the optimized composition(D-Lin-MC3-DMA), which represented a sixfold improvement relative to the 40/10/40/10 molar ratio composition[2]. 2nd generation LNP containing D-Lin-MC3-DMA were more than two orders of magnitude more potent than 1st generation LNP containing DLinDMA[4].
References:
[1]. Kulkarni JA, Myhre JL, et,al.Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine. 2017 May;13(4):1377-1387. doi: 10.1016/j.nano.2016.12.014. Epub 2016 Dec 28. PMID: 28038954.
[2]. Jayaraman M, Ansell SM, et,al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 2012 Aug 20;51(34):8529-33. doi: 10.1002/anie.201203263. Epub 2012 Jul 10. PMID: 22782619; PMCID: PMC3470698.
[3]. Ferraresso F, Strilchuk AW, et,al.Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm. 2022 Jul 4;19(7):2175-2182. doi: 10.1021/acs.molpharmaceut.2c00033. Epub 2022 May 31. PMID: 35642083; PMCID: PMC9621687.
[4]. Akinc A, Maier MA, et,al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019 Dec;14(12):1084-1087. doi: 10.1038/s41565-019-0591-y. PMID: 31802031.
[5]. Yanez Arteta M, Kjellman T, et,al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3351-E3360. doi: 10.1073/pnas.1720542115. Epub 2018 Mar 27. PMID: 29588418; PMCID: PMC5899464.
[6]. Chan CL, Majzoub RN, et,al. Endosomal escape and transfection efficiency of PEGylated cationic liposome-DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials. 2012 Jun;33(19):4928-35. doi: 10.1016/j.biomaterials.2012.03.038. Epub 2012 Apr 1. PMID: 22469293; PMCID: PMC3337860.
[7]. Maugeri M, Nawaz M, et,al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat Commun. 2019 Sep 24;10(1):4333. doi: 10.1038/s41467-019-12275-6. PMID: 31551417; PMCID: PMC6760118.
[8]. Viger-Gravel J, Schantz A, et,al.Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy. J Phys Chem B. 2018 Feb 22;122(7):2073-2081. doi: 10.1021/acs.jpcb.7b10795. Epub 2018 Feb 9. PMID: 29332384.
Dilinoleylmethyl-4-dimethylaminobutyrate (D-Lin-MC3-DMA) 是有效的体内 siRNA 递送载体[1]。
D-Lin-MC3-DMA 是在 HeLa 细胞中递送 siRNA 的有效载体[1]。当 siRNA 与含有可电离阳离子脂质 MC3(D-Lin-MC3-DMA) 或 ALC-0315[1] 的 LNP 一起递送时,两个不同肝细胞群中基因沉默的差异。 D-Lin-MC3-DMA 在生理 pH 下几乎不带电荷,一旦被内吞并夹带在早期内体隔室中,就会电离。由于预计这些早期内体含有带负电荷的磷脂酰丝氨酸脂质,因此可以推测 LNP 货物可能通过静电方式粘附并与早期内体膜融合的 LNP 逃逸[5,6]。 D-Lin-MC3-DMA -LNP 接近中性电荷,zeta 电位为 5±3 mV。虽然 D-Lin-MC3-DMA -LNP 在生理 pH 值下带中性电荷,但已知它们在核内体 pH 值下带正电荷 [7]。 LNPs 通过微流体混合技术合成,由可电离的阳离子脂质 (D-Lin-MC3-DMA)、磷脂、胆固醇和聚乙二醇 (PEG) 以及硫代磷酸化 siRNA 封装的货物组成(50 或 100%)或 mRNA。 LNPs 与生物活性药物 siRNA 形成物理稳定的复合物,持续时间为 94 天[8]。
在小鼠 FVII 模型中,优化组合物 (D-Lin-MC3-DMA) 的 ED50 为 0.005 mg kg 1 siRNA,相对于 40/10/40/10 摩尔比提高了六倍组成[2]。含有 D-Lin-MC3-DMA 的第 2 代 LNP 比含有 DLinDMA 的第 1 代 LNP 强两个数量级以上[4]。
Cell experiment [1]: | |
Cell lines |
HeLa cells |
Preparation Method |
Luciferase expression following incubation of cultured HeLa cells with LNP-pCI-FLuc (0.029 mg DNA per µmol lipid) for 24 h at pDNA concentrations of 0.75-6.0 µg/ml. LNP lipid composition D-Lin-MC3-DMA/HL/cholesterol/PEG-lipid (50/10/38.5/1.5; mol/mol)( D-Lin-MC3-DMA). |
Reaction Conditions |
LNP lipid composition MC3/HL/cholesterol/PEG-lipid (50/10/38.5/1.5; mol/mol). |
Applications |
D-Lin-MC3-DMA is an ionizable cationic lipid that is an effective carrier for delivering siRNA. |
Animal experiment [2]: | |
Animal models |
8-10 week old, female C57BL/6 mice |
Preparation Method |
LNP-siRNA systems containing Factor VII siRNA( D-Lin-MC3-DMA ) were diluted to the appropriate concentrations in sterile PBS immediately prior to use and the formulations were administered intravenously via the lateral tail vein in a total volume of 10 ml/kg. |
Dosage form |
Molar ratio of the four lipid MC3, DSPC, cholesterol and PEG-lipid (50/10/38.5/1.5). |
Applications |
In the murine FVII model, an ED50 of 0.005 mg kg 1 siRNA was achieved in the optimized composition( D-Lin-MC3-DMA), which represented a sixfold improvement relative to the 40/10/40/10 molar ratio composition. |
References: [1]. Kulkarni JA, Myhre JL,et,al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine. 2017 May;13(4):1377-1387. doi: 10.1016/j.nano.2016.12.014. Epub 2016 Dec 28. PMID: 28038954. |
Cas No. | 1224606-06-7 | SDF | |
别名 | 4-(N,N-二甲基氨基)丁酸(二亚油基)甲酯 | ||
Canonical SMILES | O=C(OC(CCCCCCCC/C=C\C/C=C\CCCCC)CCCCCCCC/C=C\C/C=C\CCCCC)CCCN(C)C | ||
分子式 | C43H79NO2 | 分子量 | 642.09 |
溶解度 | DMSO: 250 mg/mL (389.35 mM); Ethanol: ≥ 60 mg/mL (93.44 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.5574 mL | 7.7871 mL | 15.5741 mL |
5 mM | 0.3115 mL | 1.5574 mL | 3.1148 mL |
10 mM | 0.1557 mL | 0.7787 mL | 1.5574 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet