FGTI-2734
目录号 : GC36038FGTI-2734 是 RAS C-末端法尼基转移酶 (FT) 和香叶烯基转移酶-1 (GGT) 抑制剂,对 FT 和 GGT 的 IC50s 分别为 250 nM和 520 nM。 FGTI-2734 可以阻断 KRAS 的膜定位,从而解决 KRAS 耐药性问题,并抑制突变的 KRAS 胰腺肿瘤。
Cas No.:1247018-19-4
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
FGTI-2734 is a RAS C-terminal mimetic dual farnesyl transferase (FT) and geranylgeranyl transferase-1 (GGT) inhibitor with IC50s of 250 nM and 520 nM for FT and GGT, respectively. FGTI-2734 can prevent membrane localization of KRAS, hence solving KRAS resistance problem and thwarting mutant KRAS patient-derived pancreatic tumors[1]. IC50: 250 nM (FT) and 520 nM (GGT)[1]
FGTI-2734 (1-30 μM; 72 hours) induces CASPASE-3 and PARP cleavage in MiaPaCa2, L3.6pl and Calu6 cells[1]. FGTI-2734 (3-30 μM; 72 hours) inhibits both protein prenylation of HDJ2, RAP1A, KRAS and NRAS. FGTI-2734 inhibits KRAS membrane localization in RAS-transformed murine NIH3T3 cells and in mutant KRAS human cancer cells[1]. Apoptosis Analysis[1] Cell Line: MiaPaCa2, L3.6pl and Calu6 cells
FGTI-2734 (intraperitoneally; 100 mg/kg/daily for 18 to 25 days) only inhibits tumor growth in mutant KRAS-dependent tumors but not in mutant KRAS-independent tumors[1]. Animal Model: Male SCID-bg mice following injection of MiaPaCa2, L3.6pl, Calu6, A549, H460 and DLD1 cancer cells[1]
[1]. Kazi A, et al. Dual farnesyl and geranylgeranyl transferase inhibitor thwarts mutant KRAS-driven patient-derived pancreatic tumors. Clin Cancer Res. 2019 Jun 21.
Cas No. | 1247018-19-4 | SDF | |
Canonical SMILES | O=S(C1=NC=CC=C1)(N(CCN(C2=CC=C(C#N)C=C2F)CC3=CN=CN3C)CC4CCCCC4)=O | ||
分子式 | C26H31FN6O2S | 分子量 | 510.63 |
溶解度 | DMSO: 50 mg/mL (97.92 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.9584 mL | 9.7918 mL | 19.5837 mL |
5 mM | 0.3917 mL | 1.9584 mL | 3.9167 mL |
10 mM | 0.1958 mL | 0.9792 mL | 1.9584 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Dual Farnesyl and Geranylgeranyl Transferase Inhibitor Thwarts Mutant KRAS-Driven Patient-Derived Pancreatic Tumors
Clin Cancer Res 2019 Oct 1;25(19):5984-5996.PMID:31227505DOI:PMC6774803
Purpose: Mutant KRAS is a major driver of pancreatic oncogenesis and therapy resistance, yet KRAS inhibitors are lacking in the clinic. KRAS requires farnesylation for membrane localization and cancer-causing activity prompting the development of farnesyltransferase inhibitors (FTIs) as anticancer agents. However, KRAS becomes geranylgeranylated and active when cancer cells are treated with FTIs. To overcome this geranylgeranylation-dependent resistance to FTIs, we designed FGTI-2734, a RAS C-terminal mimetic dual FT and geranylgeranyltransferase-1 inhibitor (GGTI). Experimental design: Immunofluorescence, cellular fractionation, and gel shift assays were used to assess RAS membrane association, Western blotting to evaluate FGTI-2734 effects on signaling, and mouse models to demonstrate its antitumor activity. Results: FGTI-2734, but not the selective FTI-2148 and GGTI-2418, inhibited membrane localization of KRAS in pancreatic, lung, and colon human cancer cells. FGTI-2734 induced apoptosis and inhibited the growth in mice of mutant KRAS-dependent but not mutant KRAS-independent human tumors. Importantly, FGTI-2734 inhibited the growth of xenografts derived from four patients with pancreatic cancer with mutant KRAS (2 G12D and 2 G12V) tumors. FGTI-2734 was also highly effective at inhibiting, in three-dimensional cocultures with resistance promoting pancreatic stellate cells, the viability of primary and metastatic mutant KRAS tumor cells derived from eight patients with pancreatic cancer. Finally, FGTI-2734 suppressed oncogenic pathways mediated by AKT, mTOR, and cMYC while upregulating p53 and inducing apoptosis in patient-derived xenografts in vivo. Conclusions: The development of this novel dual FGTI overcomes a major hurdle in KRAS resistance, thwarting growth of patient-derived mutant KRAS-driven xenografts from patients with pancreatic cancer, and as such it warrants further preclinical and clinical studies.