Ganoderic acid H
(Synonyms: 灵芝酸H) 目录号 : GC36119A triterpene with diverse biological activities
Cas No.:98665-19-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Ganoderic acid H is a triterpene that has been found in G. lucidum and has diverse biological activities.1,2,3,4 It inhibits angiotensin-converting enzyme (ACE; IC50 = 26 ?M).1 Ganoderic acid H also inhibits HIV-1 protease with an IC50 value of 200 ?M.2 It reduces colony formation and migration of MDA-MB-231 breast cancer cells in a concentration-dependent manner.3 In vivo, ganoderic acid H (1, 3, and 5 mg/kg) inhibits acetic acid-induced writhing in mice.4
1.Morigiwa, A., Kitabatake, K., Fujimoto, Y., et al.Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidumChem. Pharm. Bull. (Tokyo)34(7)3025-3028(1986) 2.El-Mekkawy, S., Meselhy, M.R., Nakamura, N., et al.Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidumPhytochemistry49(6)1651-1657(1998) 3.Jiang, J., Grieb, B., Thyagarajan, A., et al.Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-κB signalingInt. J. Mol. Med.21(5)577-584(2008) 4.Koyama, K., Imaizumi, T., Akiba, M., et al.Antinociceptive components of Ganoderma lucidumPlanta Med.63(3)224-227(1997)
Cas No. | 98665-19-1 | SDF | |
别名 | 灵芝酸H | ||
Canonical SMILES | CC(C)(C1C2)C(O)CCC1(C)C3=C(C4(C(CC(C4(C(OC(C)=O)C3=O)C)C(C)CC(CC(C)C(O)=O)=O)=O)C)C2=O | ||
分子式 | C32H44O9 | 分子量 | 572.69 |
溶解度 | Soluble in DMSO | 储存条件 | 4°C, protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.7461 mL | 8.7307 mL | 17.4615 mL |
5 mM | 0.3492 mL | 1.7461 mL | 3.4923 mL |
10 mM | 0.1746 mL | 0.8731 mL | 1.7461 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Pharmacokinetic, Metabolomic, and Stability Assessment of Ganoderic acid H Based Triterpenoid Enriched Fraction of Ganoderma lucidum P. Karst
Metabolites 2022 Jan 21;12(2):97.PMID:35208173DOI:10.3390/metabo12020097.
Ganoderma lucidum P. karst is an edible fungus that is used in traditional medicine and contains triterpenoids as the major phytoconstituents. Ganoderic acids are the most abundant triterpenoids that showed pharmacological activity. As Indian varieties contain Ganoderic acid H (GA-H), we aimed to prepare GA-H-based triterpenoid enriched fraction (TEF) and evaluated its pharmacokinetics, metabolomics, and stability analysis. A high-performance liquid chromatography (HPLC) method was developed to quantify GA-H in TEF and rat plasma. Based on GA-H content, a stability assessment and pharmacokinetic study of TEF were also performed. After its oral administration to rats, TEF's the metabolic pattern recognition was performed through ultra-performance liquid chromatography mass spectroscopy (UPLC-MS). The developed HPLC method was found to be simple, sensitive, precise (<15%), and accurate (>90% recovery) for the quantification of GA-H. Pharmacokinetic analysis showed that GA-H reached its maximum plasma concentration (Cmax 2509.9 ng/mL) within two hours and sustained quantifiable amount up to 12 h with a low elimination rate (Kel) 0.05 L/h. TEF contained ten bioavailable constituents. The prepared TEF was found to be stable for up to one year at room temperature. The prepared TEF, enriched with ganoderic acid, is stable, contains bioavailable constituents, and can be explored as phytopharmaceuticals for different pharmacological properties. Highlights: (1). Preparation of triterpenoid enriched fraction (TEF) from Ganoderma lucidum. (2). Major triterpenoid in TEF is Ganoderic acid H (GA-H). (3). TEF contains several bioavailable phytoconstituents. (4). TEF (considering only GA-H) is stable for up to one year at room temperature. (5). GA-H is rapidly absorbed and has high systemic exposure.
[Ganoderma triterpenoids from aqueous extract of Ganoderma lucidum]
Zhongguo Zhong Yao Za Zhi 2017 May;42(10):1908-1915.PMID:29090550DOI:10.19540/j.cnki.cjcmm.20170412.001.
A new triterpenoid and 18 analogues were isolated from the water extract of Ganoderma lucidum by column chromatographic techniques, including silica gel, ODS, Sephadex LH-20, and HPLC. The new compound was elucidated as 2β-acetoxy-3β,25-dihydroxy-7,11,15-trioxo-lanost-8-en-26-oic acid on the basis of analyses of extensive spectroscopic data and its physicochemical properties. Comparison of NMR data with those reported in literature, the known analogues were determined as Ganoderic acid H (2), 12β-acetoxy-3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid (3), ganoderenic acid D (4),ganoderic acid C1 (5),ganoderic acid G (6),3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid (7),ganoderic acid B (8),ganoderic acid C6 (9),3β,15α-dihydroxy-7,11,23-trioxo-lanost-8,16-dien-26-oic acid (10),ganoderic acid A (11),ganolucidic acid A (12),lucidenic acid E2 (13),lucidenic acid N (14),lucidenic acid P (15), lucidenic acid B (16),lucidenic acid A (17),lucidenic acid C (18),and lucidenic acid L (19), respectively. Compound 1 is new compound and compounds 2-19 have been reported from G. lucidum. The present study enriches the knowledge of the chemical constituent of G. lucidum and completes chemical investigation of water decoction that is traditional use of G. lucidum.
Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice
J Ethnopharmacol 2018 Jan 10;210:287-295.PMID:28882624DOI:10.1016/j.jep.2017.08.041.
Ethnopharmacological relevance: Ganoderma lucidum (GL) is an oriental medical fungus, which was used to prevent and treat many diseases. Previously, the effective compounds of Ganoderma lucidum extract (GLE) were extracted from two kinds of GL, [Ganoderma lucidum (Leyss. Ex Fr.) Karst.] and [Ganoderma sinense Zhao, Xu et Zhang], which have been used for adjuvant anti-cancer clinical therapy for more than 20 years. However, its concrete active compounds and its regulation mechanisms on tumor are unclear. Aim of the study: In this study, we aimed to identify the main active compounds from GLE and to investigate its anti-cancer mechanisms via drug-target biological network construction and prediction. Materials and methods: The main active compounds of GLE were identified by HPLC, EI-MS and NMR, and the compounds related targets were predicted using docking program. To investigate the functions of GL holistically, the active compounds of GL and related targets were predicted based on four public databases. Subsequently, the Identified-Compound-Target network and Predicted-Compound-Target network were constructed respectively, and they were overlapped to detect the hub potential targets in both networks. Furthermore, the qRT-PCR and western-blot assays were used to validate the expression levels of target genes in GLE treated Hepa1-6-bearing C57 BL/6 mice. Results: In our work, 12 active compounds of GLE were identified, including Ganoderic acid A, Ganoderenic acid A, Ganoderic acid B, Ganoderic acid H, Ganoderic acid C2, Ganoderenic acid D, Ganoderic acid D, Ganoderenic acid G, Ganoderic acid Y, Kaemferol, Genistein and Ergosterol. Using the docking program, 20 targets were mapped to 12 compounds of GLE. Furthermore, 122 effective active compounds of GL and 116 targets were holistically predicted using public databases. Compare with the Identified-Compound-Target network and Predicted-Compound-Target network, 6 hub targets were screened, including AR, CHRM2, ESR1, NR3C1, NR3C2 and PGR, which was considered as potential markers and might play important roles in the process of GLE treatment. GLE effectively inhibited tumor growth in Hepa1-6-bearing C57 BL/6 mice. Finally, consistent with the results of qRT-PCR data, the results of western-blot assay demonstrated the expression levels of PGR and ESR1 were up-regulated, as well as the expression levels of NR3C2 and AR were down-regulated, while the change of NR3C1 and CHRM2 had no statistical significance. Conclusions: The results indicated that these 4 hub target genes, including NR3C2, AR, ESR1 and PGR, might act as potential markers to evaluate the curative effect of GLE treatment in tumor. And, the combined data provide preliminary study of the pharmacological mechanisms of GLE, which may be a promising potential therapeutic and chemopreventative candidate for anti-cancer.
Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum
Phytochemistry 1998 Nov;49(6):1651-7.PMID:9862140DOI:10.1016/s0031-9422(98)00254-4.
A new highly oxygenated triterpene named ganoderic acid alpha has been isolated from a methanol extract of the fruiting bodies of Ganoderma lucidum together with twelve known compounds. The structures of the isolated compounds were determined by spectroscopic means including 2D-NMR. Ganoderiol F and ganodermanontriol were found to be active as anti-HIV-1 agents with an inhibitory concentration of 7.8 micrograms ml-1 for both, and ganoderic acid B, ganoderiol B, ganoderic acid C1, 3 beta-5 alpha-dihydroxy-6 beta-methoxyergosta-7,22-diene, ganoderic acid alpha, Ganoderic acid H and ganoderiol A were moderately active inhibitors against HIV-1 PR with a 50% inhibitory concentration of 0.17-0.23 mM.
Extraction optimisation and isolation of triterpenoids from Ganoderma lucidum and their effect on human carcinoma cell growth
Nat Prod Res 2014;28(24):2264-72.PMID:25032738DOI:10.1080/14786419.2014.938337.
The response surface methodology was used to optimise the extraction conditions of Ganoderma lucidum based on a Box-Behnken design. A quadratic model sufficiently simulated the response of Ganoderic acid H with a determination coefficient (R(2)) of 0.98. The optimal condition for extracting triterpenoids was determined to be 100.00% ethanol at 60.22°C for 6.00 h, under which the yield of the reference triterpenoid Ganoderic acid H increased from 0.88 to 2.09 mg/g powder. Following extraction, triterpenoid-enriched fraction was further isolated into 23 fractions, and 7 fractions were identified as ganoderic acids A, B, D, G, H and I and ganoderenic acid D. Of the seven triterpenoids, ganoderenic acid D was most cytotoxic with IC50 values of 0.14 ± 0.01, 0.18 ± 0.02 and 0.26 ± 0.03 mg/mL in Hep G2, Hela and Caco-2 cells, respectively. While ganoderic acids A, G and H were relatively non-cytotoxic. The variation of inhibitory effects for these triterpenoids was likely related to their chemical structures.