Home>>Signaling Pathways>> DNA Damage/DNA Repair>> DNA/RNA Synthesis>>JH-RE-06

JH-RE-06 Sale

目录号 : GC36367

JH-RE-06 is a potent REV1-REV7 interface inhibitor with an IC50 of 0.78 μM and Kd value of 0.42 μM, disrupting REV1-POL ζ-mediated mutagenic translesion synthesis (TLS).

JH-RE-06 Chemical Structure

Cas No.:1361227-90-8

规格 价格 库存 购买数量
100mg 待询 待询
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

JH-RE-06 is a potent REV1-REV7 interface inhibitor with an IC50 of 0.78 μM and Kd value of 0.42 μM, disrupting REV1-POL ζ-mediated mutagenic translesion synthesis (TLS).

JH-RE-06 disrupts mutagenic TLS by preventing recruitment of mutagenic POL ζ. Remarkably, JH-RE-06 targets a nearly featureless surface of REV1 that interacts with the REV7 subunit of POL ζ. Binding of JH-RE-06 induces REV1 dimerization, which blocks the REV1-REV7 interaction and POL ζ recruitment. JH-RE-06 inhibits mutagenic TLS and enhances cisplatin-induced-toxicity in cultured human and mouse cell lines.[1]

JH-RE-06 improves tumor cell response to cisplatin in vivo. Co-administration of JH-RE-06 with cisplatin suppresses the growth of xenograft human melanomas in mice, establishing a framework for developing TLS inhibitors as a novel class of chemotherapy adjuvants.[1]

[1] Jessica L Wojtaszek, et al. Cell. 2019 Jun 27;178(1):152-159.e11.

Chemical Properties

Cas No. 1361227-90-8 SDF
Canonical SMILES O=C1C(C(CC(C)C)=O)=C(NC2=CC=C(Cl)C=C2Cl)NC3=C1C([N+]([O-])=O)=CC=C3Cl
分子式 C20H16Cl3N3O4 分子量 468.72
溶解度 DMSO: 5 mg/mL (10.67 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1335 mL 10.6673 mL 21.3347 mL
5 mM 0.4267 mL 2.1335 mL 4.2669 mL
10 mM 0.2133 mL 1.0667 mL 2.1335 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks

Proc Natl Acad Sci U S A 2020 Nov 17;117(46):28918-28921.PMID:33168727DOI:10.1073/pnas.2016064117.

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated β-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.

REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps

Mol Cell 2021 Oct 7;81(19):4008-4025.e7.PMID:34508659DOI:10.1016/j.molcel.2021.08.016.

BRCA1/2 mutant tumor cells display an elevated mutation burden, the etiology of which remains unclear. Here, we report that these cells accumulate ssDNA gaps and spontaneous mutations during unperturbed DNA replication due to repriming by the DNA primase-polymerase PRIMPOL. Gap accumulation requires the DNA glycosylase SMUG1 and is exacerbated by depletion of the translesion synthesis (TLS) factor RAD18 or inhibition of the error-prone TLS polymerase complex REV1-Polζ by the small molecule JH-RE-06. JH-RE-06 treatment of BRCA1/2-deficient cells results in reduced mutation rates and PRIMPOL- and SMUG1-dependent loss of viability. Through cellular and animal studies, we demonstrate that JH-RE-06 is preferentially toxic toward HR-deficient cancer cells. Furthermore, JH-RE-06 remains effective toward PARP inhibitor (PARPi)-resistant BRCA1 mutant cells and displays additive toxicity with crosslinking agents or PARPi. Collectively, these studies identify a protective and mutagenic role for REV1-Polζ in BRCA1/2 mutant cells and provide the rationale for using REV1-Polζ inhibitors to treat BRCA1/2 mutant tumors.

REV1 promotes lung tumorigenesis by activating the Rad18/SERTAD2 axis

Cell Death Dis 2022 Feb 3;13(2):110.PMID:35115490DOI:10.1038/s41419-022-04567-5.

REV1 is the central member of the family of TLS polymerases, which participate in various DNA damage repair and tolerance pathways and play a significant role in maintaining genomic stability. However, the role of REV1 in tumors is rarely reported. In this study, we found that the expression of REV1 was significantly upregulated in lung cancer tissues compared with matched adjacent tissues and was associated with poor prognosis. Functional experiments demonstrated that REV1 silencing decreased the growth and proliferation capacity of lung cancer cells. Mechanistically, REV1 upregulated the expression of SERTAD2 in a Rad18-dependent manner, thereby promoting lung carcinogenesis. A novel REV1 inhibitor, JH-RE-06, suppressed lung tumorigenesis in vivo and in vitro and was shown to be safe and well tolerated. Our study confirmed that REV1 is a potential diagnostic marker and therapeutic target for lung cancer and that JH-RE-06 may be a safe and efficient therapeutic agent for NSCLC.

SARS-CoV-2 hijacks host cell genome instability pathways

Res Sq 2022 Apr 14;rs.3.rs-1556634.PMID:35441168DOI:10.21203/rs.3.rs-1556634/v1.

The repertoire of coronavirus disease 2019 (COVID-19)-mediated adverse health outcomes has continued to expand in infected patients, including the susceptibility to developing long-COVID; however, the molecular underpinnings at the cellular level are poorly defined. In this study, we report that SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection triggers host cell genome instability by modulating the expression of molecules of DNA repair and mutagenic translesion synthesis. Further, SARS-CoV-2 infection causes genetic alterations, such as increased mutagenesis, telomere dysregulation, and elevated microsatellite instability (MSI). The MSI phenotype was coupled to reduced MLH1, MSH6, and MSH2 in infected cells. Strikingly, pre-treatment of cells with the REV1-targeting translesion DNA synthesis inhibitor, JH-RE-06, suppresses SARS-CoV-2 proliferation and dramatically represses the SARS-CoV-2-dependent genome instability. Mechanistically, JH-RE-06 treatment induces autophagy, which we hypothesize limits SARS-CoV-2 proliferation and, therefore, the hijacking of host-cell genome instability pathways. These results have implications for understanding the pathobiological consequences of COVID-19.

A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy

Cell 2019 Jun 27;178(1):152-159.e11.PMID:31178121DOI:10.1016/j.cell.2019.05.028.

Intrinsic and acquired drug resistance and induction of secondary malignancies limit successful chemotherapy. Because mutagenic translesion synthesis (TLS) contributes to chemoresistance as well as treatment-induced mutations, targeting TLS is an attractive avenue for improving chemotherapeutics. However, development of small molecules with high specificity and in vivo efficacy for mutagenic TLS has been challenging. Here, we report the discovery of a small-molecule inhibitor, JH-RE-06, that disrupts mutagenic TLS by preventing recruitment of mutagenic POL ζ. Remarkably, JH-RE-06 targets a nearly featureless surface of REV1 that interacts with the REV7 subunit of POL ζ. Binding of JH-RE-06 induces REV1 dimerization, which blocks the REV1-REV7 interaction and POL ζ recruitment. JH-RE-06 inhibits mutagenic TLS and enhances cisplatin-induced toxicity in cultured human and mouse cell lines. Co-administration of JH-RE-06 with cisplatin suppresses the growth of xenograft human melanomas in mice, establishing a framework for developing TLS inhibitors as a novel class of chemotherapy adjuvants.