Home>>Natural Products>>Lancerin

Lancerin Sale

(Synonyms: 4-Β-D-葡萄糖基-1,3,7-三羟基呫吨酮) 目录号 : GC36421

Lancerin 可从Cudraniu cochinchinensis 的根皮中提取到,拥有抗脂质过氧化作用。

Lancerin Chemical Structure

Cas No.:81991-99-3

规格 价格 库存 购买数量
1mg
¥1,374.00
现货
5mg
¥3,024.00
现货
10mg
¥5,139.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Lancerin, isolated from the root bark of Cudraniu cochinchinensis, possesses anti-lipid peroxidation[1].

[1]. Chang CH, et al. Effects on anti-lipid peroxidation of Cudrania cochinchinensis var. gerontogea. J Ethnopharmacol. 1994 Oct;44(2):79-85.

Chemical Properties

Cas No. 81991-99-3 SDF
别名 4-Β-D-葡萄糖基-1,3,7-三羟基呫吨酮
Canonical SMILES O=C1C2=C(OC3=C1C=C(O)C=C3)C([C@H]4[C@@H]([C@H]([C@@H]([C@@H](CO)O4)O)O)O)=C(O)C=C2O
分子式 C19H18O10 分子量 406.34
溶解度 DMSO : 125 mg/mL (307.62 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.461 mL 12.305 mL 24.6099 mL
5 mM 0.4922 mL 2.461 mL 4.922 mL
10 mM 0.2461 mL 1.2305 mL 2.461 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide Radical (PTIO•) Trapping Activity and Mechanisms of 16 Phenolic Xanthones

Molecules 2018 Jul 11;23(7):1692.PMID:29997352DOI:10.3390/molecules23071692.

This study used the 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) trapping model to study the antioxidant activities of 16 natural xanthones in aqueous solution, including garcinone C, γ-mangostin, subelliptenone G, mangiferin, 1,6,7-trihydroxy-xanthone, 1,2,5-trihydroxyxanthone, 1,5,6-trihydroxyxanthone, norathyriol, 1,3,5,6-tetrahydroxy-xanthone, isojacareubin, 1,3,5,8-tetrahydroxyxanthone, isomangiferin, 2-hydroxyxanthone, 7-O-methylmangiferin, neomangiferin, and Lancerin. It was observed that most of the 16 xanthones could scavenge the PTIO• radical in a dose-dependent manner at pH 4.5 and 7.4. Among them, 12 xanthones of the para-di-OHs (or ortho-di-OHs) type always exhibited lower half maximal inhibitory concentration (IC50) values than those not of the para-di-OHs (or ortho-di-OHs) type. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis revealed that most of these xanthones gave xanthone-xanthone dimers after incubation with PTIO•, except for neomangiferin. Based on these data, we concluded that the antioxidant activity of phenolic xanthone may be mediated by electron-transfer (ET) plus H⁺-transfer mechanisms. Through these mechanisms, some xanthones can further dimerize unless they bear huge substituents with steric hindrance. Four substituent types (i.e., para-di-OHs, 5,6-di-OHs, 6,7-di-OHs, and 7,8-di-OHs) dominate the antioxidant activity of phenolic xanthones, while other substituents (including isoprenyl and 3-hydroxy-3-methylbutyl substituents) play a minor role as long as they do not break the above four types.

Chemical investigation of the roots of Polygala sibirica L

Chin J Nat Med 2014 Mar;12(3):225-8.PMID:24702811DOI:10.1016/S1875-5364(14)60038-8.

Aim: To investigate the chemical constituents of the roots of Polygala sibirica L. (Polygalaceae) Method: The isolation was performed by solvent extraction and various chromatographic techniques, including silica gel, Sephadex LH-20, ODS, semi-preparative HPLC, and preparative TLC. The chemical structures were elucidated based on extensive spectroscopic analysis, including HR-ESI-MS and 1D- and 2D-NMR spectroscopic data. Results: A total of sixteen compounds, including five xanthones (5, 7-10), five saccharide esters (1, 3, 4, 12, 13), two flavonoids (14, 16), two triterpenoids (11, 15), one phenylpropanoid (6), and one benzophenone glycoside (2) were isolated. Their structures were determined as sibiricose A7 (1), sibiriphenone A (2), polygalatenoside A (3), polygalatenoside C (4), Lancerin (5), 3, 4, 5-trimethoxycinnamic acid (6), 6-hydroxy-1, 2, 3, 7-tetramethoxyxanthone (7), 1, 3, 7-trihydroxy-2-methoxyxanthone (8), onjixanthone II (9), 1, 2, 3, 6, 7-pentamethoxyxanthone (10), presenegenin (11), 3'-O-3, 4, 5-trimethoxycinnamoyl-6-O-4-methoxy benzoyl sucrose (12), tenuifoliside C (13), 5, 3'-dihydroxy-7, 4'-dimethoxyflavonol-3-O-β-D-glucopyranoside (14), tenuifolin (15), and rhamnetin 3-O-β-D-glucopyranoside (16). Conclusion: Compounds 1 and 2 are two new compounds from P. sibirica.

Phytochemical re-investigation of Gentiana utriculosa

Nat Prod Res 2009;23(5):466-9.PMID:19296391DOI:10.1080/14786410802079477.

Xanthone-O-glycosides with 1,3,7,8-oxidation pattern and flavone isoorientin-3'-O-glucoside were isolated from the aerial parts of Gentiana utriculosa. Xanthone-C-glucoside Lancerin was detected in Gentiana species for the first time. The distribution of these compounds within the section Calathianae is discussed.

Phenolic compounds from the whole plants of Gentiana rhodantha (Gentianaceae)

Chem Biodivers 2011 Oct;8(10):1891-900.PMID:22006717DOI:10.1002/cbdv.201000220.

Gentiana rhodantha Franch. ex Hemsl. (Gentianaceae), an annual herb widely distributed in the southwest of China, has been medicinally used for the treatment of inflammation, cholecystitis, and tuberculosis by the local people of its growing areas. Chemical investigation on the whole plants led to the identification of eight new phenolic compounds, rhodanthenones A-D (1-4, resp.), apigenin 7-O-glucopyranosyl-(1→3)-glucopyranosyl-(1→3)-glucopyranoside (5), 1,2-dihydroxy-4-methoxybenzene 1-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (6), 1,2-dihydroxy-4,6-dimethoxybenzene 1-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (7), and methyl 2-O-β-D-glucopyranosyl-2,4,6-trihydroxybenzoate (8), together with eleven known compounds, 9-19. Their structures were determined on the basis of detailed spectroscopic analyses and chemical methods. Acetylcholinesterase (AChE) inhibition and cytotoxicity tests against five human cancer cell lines showed that only rhodanthenone D (4) and mangiferin (12) exhibited 18.4 and 13.4% of AChE inhibitory effects at a concentration of 10(-4) M, respectively, while compounds 1-5 and the known xanthones Lancerin (11), mangiferin (12), and neomangiferin (13) displayed no cytotoxicity at a concentration of 40 μM.

Xanthone glycosides from Polygala tenuifolia and their conformational analyses

J Nat Prod 2005 Jun;68(6):875-9.PMID:15974611DOI:10.1021/np050026+.

Seven xanthone glycosides were isolated from the cortexes of Polygala tenuifolia, and their structures were identified as polygalaxanthones VIII-XI (1-4), sibiricoxanthone B (5), 7-O-methylmangiferin (6), and Lancerin (7), on the basis of spectroscopic analyses. Compounds 1-4 are new xanthone glycosides, and compounds 4 and 5 exist as rotamers. To explain this phenomenon, conformational analyses were performed on compounds 4 and 5 and other compounds with similar skeletons that were isolated from P. tenuifolia.