ML204 hydrochloride
目录号 : GC36627A selective TRPC4 channel blocker
Cas No.:2070015-10-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
ML-204 selectively blocks transient receptor potential canonical 4 (TRPC4) channels (IC50s = 0.96 and 2.6 μM in fluorescent and electrophysiological assays, respectively).1 It exhibits 19-fold selectivity against TRPC6 and 9-fold selectivity against TRPC5 and does not affect TRPV1, TRPV3, TRPA1, or TRPM8 channels at concentrations up to 22 μM.1
1.Michishita, E., McCord, R.A., Berber, E., et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatinNature452492-496(2008)
Cas No. | 2070015-10-8 | SDF | |
Canonical SMILES | CC1=CC(N2CCCCC2)=NC3=CC=CC=C13.Cl[H] | ||
分子式 | C15H19ClN2 | 分子量 | 262.78 |
溶解度 | Water: ≥ 30 mg/mL (114.16 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.8055 mL | 19.0273 mL | 38.0546 mL |
5 mM | 0.7611 mL | 3.8055 mL | 7.6109 mL |
10 mM | 0.3805 mL | 1.9027 mL | 3.8055 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells
Cells 2020 Feb 5;9(2):365.PMID:32033274DOI:10.3390/cells9020365.
Persistent neural activity has been observed in vivo during working memory tasks, and supports short-term (up to tens of seconds) retention of information. While synaptic and intrinsic cellular mechanisms of persistent firing have been proposed, underlying cellular mechanisms are not yet fully understood. In vitro experiments have shown that individual neurons in the hippocampus and other working memory related areas support persistent firing through intrinsic cellular mechanisms that involve the transient receptor potential canonical (TRPC) channels. Recent behavioral studies demonstrating the involvement of TRPC channels on working memory make the hypothesis that TRPC driven persistent firing supports working memory a very attractive one. However, this view has been challenged by recent findings that persistent firing in vitro is unchanged in TRPC knock out (KO) mice. To assess the involvement of TRPC channels further, we tested novel and highly specific TRPC channel blockers in cholinergically induced persistent firing in mice CA1 pyramidal cells for the first time. The application of the TRPC4 blocker ML204, TRPC5 blocker clemizole hydrochloride, and TRPC4 and 5 blocker Pico145, all significantly inhibited persistent firing. In addition, intracellular application of TRPC4 and TRPC5 antibodies significantly reduced persistent firing. Taken together these results indicate that TRPC4 and 5 channels support persistent firing in CA1 pyramidal neurons. Finally, we discuss possible scenarios causing these controversial observations on the role of TRPC channels in persistent firing.
Muscarinic receptor-induced contractions of the detrusor are impaired in TRPC4 deficient mice
Sci Rep 2018 Jun 18;8(1):9264.PMID:29915209DOI:10.1038/s41598-018-27617-5.
Acetylcholine contracts the bladder by binding to muscarinic M3 receptors on the detrusor, leading to Ca2+ influx via voltage-gated Ca2+ channels. The cellular mechanisms linking these events are poorly understood, but studies have suggested that activation of TRPC4 channels could be involved. The purpose of this study was to investigate if spontaneous and cholinergic-mediated contractions of the detrusor were impaired in TRPC4 deficient (TRPC4-/-) mice. Isometric tension recordings were made from strips of wild-type (WT) and TRPC4-/- detrusor. Spontaneous phasic detrusor contractions were significantly smaller in TRPC4-/- mice compared to wild-type, however no difference in response to exogenous application of 60 mM KCl was observed. Cholinergic responses, induced by electric-field stimulation (EFS), bath application of the cholinergic agonist carbachol, or the acetylcholinesterase inhibitor neostigmine were all significantly smaller in TRPC4-/- detrusor strips than wild-type. Surprisingly, the TRPC4/5 inhibitor ML204 reduced EFS and CCh-evoked contractions in TRPC4-/- detrusor strips. However, TRPC5 expression was up-regulated in these preparations and, in contrast to wild-type, EFS responses were reduced in amplitude by the TRPC5 channel inhibitor clemizole hydrochloride. This study demonstrates that TRPC4 channels are involved in spontaneous and cholinergic-mediated contractions of the murine detrusor. TRPC5 expression is up-regulated in TRPC4-/- detrusor strips, and may partially compensate for loss of TRPC4 channels.
The Role of Angiotensin II in Glomerular Volume Dynamics and Podocyte Calcium Handling
Sci Rep 2017 Mar 22;7(1):299.PMID:28331185DOI:10.1038/s41598-017-00406-2.
Podocytes are becoming a primary focus of research efforts due to their association with progressive glomeruli damage in disease states. Loss of podocytes can occur as a result of excessive intracellular calcium influx, and we have previously shown that angiotensin II (Ang II) via canonical transient receptor potential 6 (TRPC6) channels caused increased intracellular Ca2+ flux in podocytes. We showed here with patch-clamp electrophysiology that Ang II activates TRPC channels; then using confocal calcium imaging we demonstrated that Ang II-dependent stimulation of Ca2+ influx in the podocytes is precluded by blocking either AT1 or AT2 receptors (ATRs). Application of Ang(1-7) had no effect on intracellular calcium. Ang II-induced calcium flux was decreased upon inhibition of TRPC channels with SAR7334, SKF 96365, clemizole hydrochloride and La3+, but not ML204. Using a novel 3D whole-glomerulus imaging ex vivo assay, we revealed the involvement of both ATRs in controlling glomerular permeability; additionally, using specific inhibitors and activators of TRPC6, we showed that these channels are implicated in the regulation of glomerular volume dynamics. Therefore, we provide evidence demonstrating the critical role of Ang II/TRPC6 axis in the control of glomeruli function, which is likely important for the development of glomerular diseases.