Home>>Peptides>>Myelin Basic Protein MBP

Myelin Basic Protein MBP Sale

(Synonyms: MHP4-14) 目录号 : GC36669

髓鞘碱性蛋白 MBP (MHP4-14) 是一种包含髓鞘碱性蛋白残基 4-14 的合成肽,是一种非常具有选择性的 PKC 底物 (Km=7 μM)。

Myelin Basic Protein MBP Chemical Structure

Cas No.:126768-94-3

规格 价格 库存 购买数量
1mg 待询 待询
5mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Myelin Basic Protein MBP, the second most abundant protein in central nervous system myelin, is responsible for adhesion of the cytosolic surfaces of multilayered compact myelin. Myelin Basic Protein MBP performs an important function in the peripheral nervous system (PNS)[1].

[1]. Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci. 2006 Sep;63(17):1945-61.

Chemical Properties

Cas No. 126768-94-3 SDF
别名 MHP4-14
分子式 C60H103N21O17 分子量 1390.59
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.7191 mL 3.5956 mL 7.1912 mL
5 mM 0.1438 mL 0.7191 mL 1.4382 mL
10 mM 0.0719 mL 0.3596 mL 0.7191 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Myelin Basic Protein: a multifunctional protein

Cell Mol Life Sci 2006 Sep;63(17):1945-61.PMID:16794783DOI:10.1007/s00018-006-6094-7.

Myelin Basic Protein (MBP), the second most abundant protein in central nervous system myelin, is responsible for adhesion of the cytosolic surfaces of multilayered compact myelin. A member of the 'intrinsically disordered' or conformationally adaptable protein family, it also appears to have several other functions. It can interact with a number of polyanionic proteins including actin, tubulin, Ca(2+)-calmodulin, and clathrin, and negatively charged lipids, and acquires structure on binding to them. It may act as a membrane actin-binding protein, which might allow it to participate in transmission of extracellular signals to the cytoskeleton in oligodendrocytes and tight junctions in myelin. Some size isoforms of MBP are transported into the nucleus and thus they may also bind polynucleotides. Extracellular signals received by myelin or cultured oligodendrocytes cause changes in phosphorylation of MBP, suggesting that MBP is also involved in signaling. Further study of this very abundant protein will reveal how it is utilized by the oligodendrocyte and myelin for different purposes.

Myelin Basic Protein (MBP) charge variants show different sphingomyelin-mediated interactions with myelin-like lipid monolayers

Biochim Biophys Acta Biomembr 2020 Feb 1;1862(2):183077.PMID:31805269DOI:10.1016/j.bbamem.2019.183077.

Multiple sclerosis (MS) is correlated with increased deimination of Myelin Basic Protein (MBP) in the central nervous system. Here, the interaction of MBP C1 (charge: +19) and MBP C8 (charge: +13) with the major lipids of the cytoplasmic side of the oligodendrocyte membrane is analysed using monolayer adsorption experiments and epifluorescence microscopy. Our findings show that the electrostatic attraction between the positively charged proteins and negatively charged lipids in the myelin-like monolayers competes with the incorporation of MBP into regions directly bordering cholesterol-rich domains. The latter is favoured to avoid additional lipid condensation and reduction in fluidity of the phospholipid layer. We find that MBP C1 does not incorporate at the cholesterol-rich domains if sphingomyelin (SM) is absent from the lipid composition. In contrast, MBP C8 is still incorporated near cholesterol-enriched regions without SM. Thus, the highly charged C1 variant needs a specific interaction with SM, whereas for C8 the incorporation at the cholesterol-rich regions is ensured due to its reduced net positive charge. This phenomenon may be relevant for the correlation of higher amounts of MBP C8 in brains of adult MS patients and healthy children, in which the amount of SM is reduced compared to healthy adults.

Autoantigen microarrays reveal Myelin Basic Protein autoantibodies in morphea

J Transl Med 2022 Jan 24;20(1):41.PMID:35073943DOI:10.1186/s12967-022-03246-5.

Background: Morphea is an autoimmune, sclerosing skin disorder. Despite the recent emphasis on immune dysregulation in morphea, the role of autoantibodies in morphea pathogenesis or utility as biomarkers are poorly defined. Methods: Autoantigen microarray was used to profile autoantibodies from the serum of participants from the Morphea in Adults and Children (MAC) cohort. Clinical and demographic features of morphea patients with Myelin Basic Protein (MBP) autoantibodies were compared to those without. MBP immunohistochemistry staining was subsequently performed in morphea skin to assess for perineural inflammation in areas of staining. Immunofluorescence staining on mouse brain tissue was also performed using patient sera and mouse anti-myelin basic protein antibody to confirm the presence of MBP antibodies in patient sera. Results: Myelin Basic Protein autoantibodies were found in greater frequency in morphea (n = 50, 71.4%) compared to systemic sclerosis (n = 2, 6.7%) and healthy controls (n = 7, 20%). Patients with MBP antibodies reported pain at higher frequencies. Morphea skin biopsies, highlighted by immunohistochemistry, demonstrated increased perineural inflammation in areas of MBP expression. Immunofluorescence staining revealed an increased fluorescence signal in myelinated areas of mouse brain tissue (i.e. axons) when incubated with sera from MBP antibody-positive morphea patients compared to sera from MBP antibody-negative morphea patients. Epitope mapping revealed target epitopes for MBP autoantibodies in morphea are distinct from those reported in MS, and included fragments 11-30, 41-60, 51-70, and 91-110. Conclusions: A molecular classification of morphea based on distinct autoantibody biosignatures may be used to differentially classify morphea. We have identified anti-MBP as a potential antibody associated with morphea due to its increased expression in morphea compared to healthy controls and systemic sclerosis patients.

Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin

Cells 2020 Feb 25;9(3):529.PMID:32106542DOI:10.3390/cells9030529.

Myelin Basic Protein (MBP) is located in the insulating covers of nerve cells in the brain and spinal cord. By interacting with lipid membranes, it is responsible for compaction of the myelin sheath in the central nervous system, which is weakened in demyelinating diseases. The lipid composition of the myelin leaflet has a high impact on the interaction between the membrane and MBP. Cholesterol is present in the cytoplasmic leaflet with a rather high amount of 44% (mol%). In this study, the focus is on the effect of cholesterol, mainly by varying its content, on the interaction of MBP with a lipid monolayer. Therefore, Langmuir lipid monolayers mimicking the cytoplasmic membrane of myelin and monolayers with variations of cholesterol content between 0% and 100% were measured at the air/water interface with additional imaging by fluorescence microscopy. All experiments were performed with and without bovine MBP to study the dependence of the interaction of the protein with the monolayers on the cholesterol content. The native amount of 44% cholesterol in the monolayer combines optima in the order of the monolayer (presumably correlating to compaction and thermodynamic stability) and protein interaction and shows unique features in comparison to lower or higher cholesterol contents.

Structural polymorphism and multifunctionality of Myelin Basic Protein

Biochemistry 2009 Sep 1;48(34):8094-104.PMID:19642704DOI:10.1021/bi901005f.

Central nervous system myelin is a dynamic entity arising from membrane processes extended from oligodendrocytes, which form a tightly wrapped multilamellar structure around neurons enabling rapid and efficient signal propagation. The gene of oligodendrocyte lineage (golli) gives rise to a variety of developmentally regulated splice isoforms of Myelin Basic Protein (MBP), denoted golli for early forms and classic for later ones. In mature myelin, the predominant splice isoform of classic MBP is 18.5 kDa; its central role is to maintain the structural integrity of the myelin sheath, by holding together the apposing cytoplasmic leaflets of the oligodendrocyte membrane in a tight, spiral, multilamellar arrangement. This protein's extreme physicochemical properties, net charge of +19 at neutral pH, low proportion of hydrophobic residues, alternating regions of predicted intrinsic disorder and order, induced folding upon association with membranes and other proteins, and diversification via combinatorial post-translational modifications, define not only its role as a molecular Velcro in compact myelin, but as a multifunctional hub that may also bind to a number of other proteins and small molecule ligands in myelinating oligodendrocytes. In particular, MBP may link the underlying cytoskeleton and proteins containing SH3 domains to the membrane, allowing it to transduce transmembrane signals to the cytosol. These associations are facilitated by MBP being an intrinsically disordered protein, creating a large effective protein surface, and by the formation of transient and/or induced ordered secondary structure elements for molecular recognition. These processes can be modulated by a molecular barcode of numerous post-translational modifications and interactions with proteins such as calmodulin. In the human demyelinating disease multiple sclerosis, an aberrant pattern of modifications may contribute to demyelination and confound inherent attempts at repair. The conformational dynamics of the various isoforms and modified variants of MBP and their interactions with other proteins potentially allow them to participate in events coupling extracellular signals to cytoskeletal organization during myelination or remyelination. Various biophysical and cell biological approaches are beginning to elucidate these properties of MBP and are leading to a new understanding of the role of this protein as a linker and/or hub in structural and signaling networks in oligodendrocytes and myelin.