Home>>Signaling Pathways>> Microbiology & Virology>> HIV>>NBD-557

NBD-557 Sale

(Synonyms: N-(4-溴苯基)-N'-(2,2,6,6-四甲基哌啶-4-基)草酰胺) 目录号 : GC36702

NBD-557是HIV-1抑制剂。

NBD-557 Chemical Structure

Cas No.:333352-59-3

规格 价格 库存 购买数量
Free Sample (0.1-0.5 mg) 待询 待询
10mM (in 1mL DMSO)
¥2,475.00
现货
5mg
¥2,250.00
现货
10mg
¥3,960.00
现货
25mg
¥7,920.00
现货
50mg 待询 待询
100mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

NBD-557 is a potentially HIV-1 inhibitor.IC50 Value: Target: HIVNBD-557, is small molecule organic compounds with drug-like properties. It showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that NBD-557 target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. NBD-557 potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that its anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that NBD-557 bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-557 was active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that NBD-557 can potentially be further modified to become potent HIV-1 entry inhibitors.

[1]. Sch•n A, Madani N, Klein JC, Hubicki A, Ng D, Yang X, Smith AB 3rd, Sodroski J, Freire E. Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry. 2006 Sep 12;45(36):10973-80. [2]. Singh IP, Chauthe SK. Small molecule HIV entry inhibitors: Part II. Attachment and fusion inhibitors: 2004-2010. Expert Opin Ther Pat. 2011 Mar;21(3):399-416. [3]. Zhao Q, Ma L, Jiang S, Lu H, Liu S, He Y, Strick N, Neamati N, Debnath AK. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology. 2005 Sep 1;339 [4]. Narumi, Tetsuo et al. CD4 mimics targeting the HIV entry mechanism and their hybrid molecules with a CXCR4 antagonist. Bioorganic & Medicinal Chemistry Letters (2010), 20(19), 5853-5858.

Chemical Properties

Cas No. 333352-59-3 SDF
别名 N-(4-溴苯基)-N'-(2,2,6,6-四甲基哌啶-4-基)草酰胺
Canonical SMILES O=C(C(NC1CC(C)(NC(C)(C1)C)C)=O)NC2=CC=C(C=C2)Br
分子式 C17H24BrN3O2 分子量 382.3
溶解度 DMSO: 10 mg/mL (26.16 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6157 mL 13.0787 mL 26.1575 mL
5 mM 0.5231 mL 2.6157 mL 5.2315 mL
10 mM 0.2616 mL 1.3079 mL 2.6157 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Binding mode characterization of NBD series CD4-mimetic HIV-1 entry inhibitors by X-ray structure and resistance study

Antimicrob Agents Chemother 2014 Sep;58(9):5478-91.PMID:25001301DOI:10.1128/AAC.03339-14.

We previously identified two small-molecule CD4 mimetics--NBD-556 and NBD-557--and synthesized a series of NBD compounds that resulted in improved neutralization activity in a single-cycle HIV-1 infectivity assay. For the current investigation, we selected several of the most active compounds and assessed their antiviral activity on a panel of 53 reference HIV-1 Env pseudoviruses representing diverse clades of clinical isolates. The selected compounds inhibited tested clades with low-micromolar potencies. Mechanism studies indicated that they act as CD4 agonists, a potentially unfavorable therapeutic trait, in that they can bind to the gp120 envelope glycoprotein and initiate a similar physiological response as CD4. However, one of the compounds, NBD-09027, exhibited reduced agonist properties, in both functional and biophysical studies. To understand the binding mode of these inhibitors, we first generated HIV-1-resistant mutants, assessed their behavior with NBD compounds, and determined the X-ray structures of two inhibitors, NBD-09027 and NBD-10007, in complex with the HIV-1 gp120 core at ∼2-Å resolution. Both studies confirmed that the NBD compounds bind similarly to NBD-556 and NBD-557 by inserting their hydrophobic groups into the Phe43 cavity of gp120. The basic nitrogen of the piperidine ring is located in close proximity to D368 of gp120 but it does not form any H-bond or salt bridge, a likely explanation for their nonoptimal antagonist properties. The results reveal the structural and biological character of the NBD series of CD4 mimetics and identify ways to reduce their agonist properties and convert them to antagonists.

Small molecule HIV entry inhibitors: Part II. Attachment and fusion inhibitors: 2004-2010

Expert Opin Ther Pat 2011 Mar;21(3):399-416.PMID:21342055DOI:10.1517/13543776.2011.550876.

Introduction: The first US FDA approved HIV entry inhibitor drug Enfuvirdine belongs to the fusion inhibitor category. Earlier efforts in this area were focused on peptides and monoclonal antibodies; recently, the focus has shifted towards the development of small molecule HIV attachment and fusion inhibitors. They can be used for prophylactic purposes and also hold potential for the development of HIV microbicides. Areas covered: In a previous paper ('Small molecule HIV entry inhibitors: Part I'), we reviewed patents and patent applications for small molecule chemokine receptor antagonists from major pharmaceutical companies. In this paper, the development of small molecule HIV attachment and fusion inhibitors is discussed in detail. It covers patents and patent applications for small molecule HIV attachment and fusion inhibitors published between 2004 and 2010 and related literature with a focus on recent developments based on lead generation and lead modification. Expert opinion: To augment the potency of currently available antiretroviral drug combinations and to fight drug-resistant virus variants, more effective drugs which target additional steps in the viral replication cycle are urgently needed. HIV attachment and fusion processes are such targets. Inhibitors of these targets will provide additional options for the treatment of HIV drug-resistant strains. Small molecule HIV attachment inhibitors such as BMS-378806 and analogs from Bristol Myers Squibb, N-aryl piperidine derivatives from Propharmacon, and NBD-556 and NBD-557 from New York Blood Center may have potential as vaginal microbicidal agents and can be an economical alternative to monoclonal antibodies.

Does Antibody Stabilize the Ligand Binding in GP120 of HIV-1 Envelope Protein? Evidence from MD Simulation

Molecules 2021 Jan 5;26(1):239.PMID:33466381DOI:10.3390/molecules26010239.

CD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility, in gp120, to the CD4 receptor. However, the mechanism of the conformational flexibility instigated by these small sized inhibitors is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows the functional importance of Asn425 in substrate induced conformational dynamics in gp120. The MD simulations of Asn425Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complexes with the antibody clearly show the enhanced affinity of NBD-557 due to the presence of the antibody, which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry2006, 45, 10973-10980).

Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120

Biochemistry 2006 Sep 12;45(36):10973-80.PMID:16953583DOI:10.1021/bi061193r.

NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.

Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4

Virology 2005 Sep 1;339(2):213-25.PMID:15996703DOI:10.1016/j.virol.2005.06.008.

We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors.