Home>>Natural Products>>Reactive Blue 4

Reactive Blue 4 Sale

(Synonyms: 活性蓝4) 目录号 : GC37073

Reactive Blue 4 是一种蒽醌类染料,能作为单一的比色化学传感器,用于在水介质中连续测定具有不同光学响应的多种分析物。Reactive Blue 4 具有植物毒性、细胞毒性和基因毒性。

Reactive Blue 4 Chemical Structure

Cas No.:13324-20-4

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥495.00
现货
100mg
¥450.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Reactive Blue 4 is an anthraquinone dye, as a single colorimetric chemosensor for sequential determination of multiple analytes with different optical responses in aqueous media. Reactive Blue 4 is phytotoxic, cytotoxic and genotoxic. Reactive Blue 4 [1][2].

[1]. Reactive Blue 4 as a Single Colorimetric Chemosensor for Sequential Determination of Multiple Analytes with Different Optical Responses in Aqueous Media: Cu2+-Cysteine Using a Metal Ion Displacement and Cu2+-Arginine Through the Host-Guest Interaction. [2]. Chaudhari AU, et al. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules. Water Res. 2017 Oct 1;122:603-613.

Chemical Properties

Cas No. 13324-20-4 SDF
别名 活性蓝4
Canonical SMILES O=S(C(C(N)=C1C2=O)=CC(NC3=CC=C(S(=O)(O)=O)C(NC4=NC(Cl)=NC(Cl)=N4)=C3)=C1C(C5=C2C=CC=C5)=O)(O)=O
分子式 C23H14Cl2N6O8S2 分子量 637.43
溶解度 DMSO: 83.33 mg/mL (130.73 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5688 mL 7.844 mL 15.688 mL
5 mM 0.3138 mL 1.5688 mL 3.1376 mL
10 mM 0.1569 mL 0.7844 mL 1.5688 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Polyaniline/Multi Walled Carbon Nanotubes-A Promising Photocatalyst Composite for Reactive Blue 4 Oxidation

Polymers (Basel) 2022 Sep 19;14(18):3922.PMID:36146066DOI:10.3390/polym14183922.

For the photocatalytic removal of the Reactive Blue 4 dye from an aqueous stream, new polyaniline/multi walled carbon nanotube nanocomposites (PANI-MWCNTs) were applied as a promising photocatalyst. The PANI-MWCNT nanocomposites were fabricated by aniline oxidation in the presence of MWCNTs using the typical direct oxidation polymerization route. The morphology, the Fourier transform infrared (FTIR) spectra and the UV-Vis absorbance spectra of the fabricated nanocomposites were studied and the attained data confirmed the good interaction between the MWCNTs and PANI matrix. The PANI-MWCNTs nanocomposites were varied according to the wt%, the MWCNTs, which ranged from 0-10 wt% and the corresponding resultant samples are labeled as P-0, P-3, P-5, P-5, P-7 and P-10, respectively. Such composites showed the high potential for the removal of the Reactive Blue 4 dye containing pollutants from wastewater. The starting concentration of the dye pollutants was halved during the first 5 min of UV illumination. The oxidation technique of Reactive Blue 4 over the prepared nanocomposites were processed in a different way and the highest catalytic activity corresponded to P-7. The process reached the complete dye removal in low concentrations of contaminants. The kinetics of the removal followed the pseudo-second order regime which possesses high correlation coefficients with the k2 in the range of 0.0036-0.1115 L.mg-1.min-1 for the Reactive Blue 4 oxidation. In this regard, the combination of the PANI and MWCNTs showed a superior novel photocatalytic activity in the oxidation of commercial textile dying wastewater, namely Reactive Blue 4. This study is the starting point for future applications on an industrial scale since the successful performances of the PANI-MWCNT on commercial dye oxidation.

Comparative Reactive Blue 4 Dye Removal by Lemon Peel Bead Doping with Iron(III) Oxide-Hydroxide and Zinc Oxide

ACS Omega 2022 Nov 1;7(45):41744-41758.PMID:36406531DOI:10.1021/acsomega.2c05956.

The increasing concern of dye contamination in wastewater results in the toxicity of aquatic life and water quality, so wastewater treatment is required to treat the low water quality standard for safety purposes. Lemon peel beads-doped iron(III) oxide-hydroxide (LBF) and lemon peel beads-doped zinc oxide (LBZ) were synthesized and characterized to investigate their crystalline structure, surface morphology, chemical compositions, chemical functional groups, and ζ potentials by X-ray diffraction, field emission scanning electron microscopy and focused ion beam, energy dispersive X-ray spectroscopy, Fourier transform infrared, and zetasizer techniques. Their effects of dose, contact time, temperature, pH, and concentration for Reactive Blue 4 (RB4) dye removal efficiencies were investigated by batch experiments, and their adsorption isotherms, kinetics, and desorption experiments were also studied. LBF and LBZ demonstrated semicrystalline structures, and their surface morphologies had a spherical shape with coarse surfaces. Five main elements of carbon (C), oxygen (O), calcium (Ca), chlorine (Cl), and sodium (Na) and six main function groups of O-H, C≡N, C=C, C-OH, C-O-C, and C-H were detected in both materials. The results of ζ potential demonstrated that both LBF and LBZ had negative charges on the surface at all pH values, and their surfaces increased more of the negative charge with the addition of the pH value from 2-12. For batch tests, the RB4 dye removal efficiencies of LBF and LBZ were 83.55 and 66.64%, respectively, so LBF demonstrated a higher RB4 dye removal efficiency than LBZ. As a result, the addition of iron(III) oxide-hydroxide helped in improving the material efficiency more than zinc oxide. In addition, both LBF and LBZ could be reused in more than five cycles for RB4 dye removal of more than 41%. The Freundlich model was a good explanation for their adsorption patterns relating to physiochemical adsorption, and a pseudo-second-order kinetic model was a well-fitted model for explaining their adsorption mechanism correlating to the chemisorption process with heterogeneous adsorption. Therefore, LBF was a potential adsorbent to further apply for RB4 dye removal in industrial applications.

Enhanced Reactive Blue 4 Biodegradation Performance of Newly Isolated white rot fungus Antrodia P5 by the Synergistic Effect of Herbal Extraction Residue

Front Microbiol 2021 Mar 30;12:644679.PMID:33868203DOI:10.3389/fmicb.2021.644679.

In this study, a white rot fungus Antrodia was newly isolated and named P5. Then its dye biodegradation ability was investigated. Our results showed that P5 could effectively degrade 1,000 mg/L Reactive Blue 4 (RB4) in 24 h with 95% decolorization under shaking conditions. It could tolerate a high dye concentration of 2,500 mg/L as well as 10% salt concentration and a wide range of pH values (4-9). Herbal extraction residues (HER) were screened as additional medium elements for P5 biodegradation. Following the addition of Fructus Gardeniae (FG) extraction residue, the biodegradation performance of P5 was significantly enhanced, achieving 92% decolorization in 12 h. Transcriptome analysis showed that the expression of multiple peroxidase genes was simultaneously increased: Lignin Peroxidase, Manganese Peroxidase, Laccase, and Dye Decolorization Peroxidase. The maximum increase in Lignin Peroxidase reached 10.22-fold in the presence of FG. The results of UV scanning and LC-HRMS showed that with the synergistic effect of FG, P5 could remarkably accelerate the biodegradation process of RB4 intermediates. Moreover, the fungal treatment with FG also promoted the abatement of RB4 toxicity. In sum, white rot fungus and herbal extraction residue were combined and used in the treatment of anthraquinone dye. This could be applied in practical contexts to realize an efficient and eco-friendly strategy for industrial dye wastewater treatment.

Toxicity Mitigation of Textile Dye Reactive Blue 4 by Hairy Roots of Helianthus annuus and Testing Its Effect in In Vivo Model Systems

Biomed Res Int 2022 Jul 25;2022:1958939.PMID:35924274DOI:10.1155/2022/1958939.

An anthraquinone textile dye, Reactive Blue 4 (RB4), poses environmental health hazards. In this study, remediation of RB4 (30-110 ppm) was carried out by hairy roots (HRs). UV-visible spectroscopy and FTIR analysis showed that the dye undergoes decolourization followed by degradation. In addition, toxicity and safety analyses of the bioremediated dye were performed on Allium cepa and zebrafish embryos, which revealed lesser toxicity of the bioremediated dye as compared to untreated dye. For Allium cepa, the highest concentration, i.e., 110 ppm of the treated dye, showed less chromosomal aberrations with a mitotic index of 8.5 ± 0.5, closer to control. Two-fold decrease in mortality of zebrafish embryos was observed at the highest treated dye concentration indicating toxicity mitigation. A higher level of lipid peroxidation (LPO) was recorded in the zebrafish embryo when exposed to untreated dye, suggesting a possible role of oxidative stress-inducing mortality of embryos. Further, the level of LPO was significantly normalized along with the other antioxidant enzymes in embryos after dye bioremediation. At lower concentrations, mitigated samples displayed similar antioxidant activity comparable to control underlining the fact that the dye at lesser concentration can be more easily degraded than the dye at higher concentration.

Reactive Blue 4 as a Single Colorimetric Chemosensor for Sequential Determination of Multiple Analytes with Different Optical Responses in Aqueous Media: Cu2+-Cysteine Using a Metal Ion Displacement and Cu2+-Arginine Through the Host-Guest Interaction

Appl Biochem Biotechnol 2019 Mar;187(3):913-937.PMID:30105545DOI:10.1007/s12010-018-2796-1.

In the current study, we reported a novel label-free and facile colorimetric approach for the sequential detection of copper ion (Cu2+), L-arginine (Arg), and L-cysteine (Cys) in the H2O (10.0 mmol L-1 HEPES buffer solution, pH 7.0) using Reactive Blue 4 (RB4). First, the presence of Cu2+ led to a naked-eye color and spectral changes according to the binding site-signaling subunit approach. Then, the RB4-Cu2+ complex was successfully applied for Cys and Arg through different recognition pathways. The optical signals for Arg were observed due to its association involving the amino group, as well as the participation of the carboxylate group in a bidentate form to the complex, while selective behavior for Cys was explained by a metal displacement mechanism. The limits of detection for Cu2+, Arg, and Cys were calculated to be 1.96, 1.06, and 1.33 μmol L-1, respectively. It could also be employed for the determination of three analytes in environmental, biological, and pharmaceutical samples. Importantly, the test strips based on RB4-Cu2+ complex could be used as a solid-state sensor for the detection of Cys and Arg. In addition, NAND and IMPLICATION molecular logic gates were obtained by using chemical inputs and UV-Vis absorbance signal as the output. Graphical Abstract.