RO-9187
(Synonyms: 4-氨基-1-(4-C-叠氮基-BETA-D-呋喃阿拉伯糖基)-2(1H)-嘧啶酮) 目录号 : GC37550RO-9187是高效的HCV病毒复制抑制剂,IC50值为171 nM。
Cas No.:876708-03-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Animal experiment: | Rats: A 2-week oral range finding toxicity study is performed with RO-9187 and ribavirin in Hanover-Wistar rats. Five male and five female rats in each of five treatment groups are administered once daily doses of vehicle, 200, 600, or 2000 mg/kg RO-9187 or 200 mg/kg ribavirin by oral gavage for 14 days[1]. |
References: [1]. Klumpp K, et al. 2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups. J Biol Chem. 2008 Jan 25;283(4):2167-75. |
RO-9187 is a potent inhibitor of HCV virus replication with an IC50 of 171 nM. IC50: 171 nM (HCV)[1]
RO-9187 is excellent substrates for deoxycytidine kinase and is phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. RO-9187 inhibits RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. The formation of RO-9187-TP increased in a time- and dose-dependent manner. The maximal triphosphate concentration at 24 h is 87 pmol/106 cells with half-maximal triphosphate formation achieved at 12 μM RO-9187[1].
Plasma exposures of RO-9187 in rats increase in a dose-dependent manner between 10 and 2000 mg/kg after oral dosing. Plasma concentrations of 1.4 and 26 μM (390 and 7454 ng/mL) are achieved in rats and dogs at the 10 mg/kg dose level, respectively. Plasma concentrations up to 57 μM are achieved in rats dosed with 2000 mg/kg/day[1].
[1]. Klumpp K, et al. 2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups. J Biol Chem. 2008 Jan 25;283(4):2167-75.
Cas No. | 876708-03-1 | SDF | |
别名 | 4-氨基-1-(4-C-叠氮基-BETA-D-呋喃阿拉伯糖基)-2(1H)-嘧啶酮 | ||
Canonical SMILES | O=C1N=C(N)C=CN1[C@H]2[C@@H](O)[C@H](O)[C@](CO)(N=[N+]=[N-])O2 | ||
分子式 | C9H12N6O5 | 分子量 | 284.23 |
溶解度 | Water: 7.14 mg/mL (25.12 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.5183 mL | 17.5914 mL | 35.1828 mL |
5 mM | 0.7037 mL | 3.5183 mL | 7.0366 mL |
10 mM | 0.3518 mL | 1.7591 mL | 3.5183 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups
J Biol Chem 2008 Jan 25;283(4):2167-75.PMID:18003608DOI:10.1074/jbc.M708929200.
RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2'-alpha-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of alpha-hydroxy moieties. 2'-deoxy-2'-beta-fluoro-4'-azidocytidine (RO-0622) and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC(50) = 171 +/- 12 nM and 24 +/- 3 nM for RO-9187 and RO-0622, respectively; CC(50) >1 mM for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4'-azidocytidine) or 2'-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC(50) values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2'-alpha-deoxy-4'-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.
Antiviral candidates against the hepatitis E virus (HEV) and their combinations inhibit HEV growth in in vitro
Antiviral Res 2019 Oct;170:104570.PMID:31362004DOI:10.1016/j.antiviral.2019.104570.
Hepatitis E is a global public health problem. Ribavirin (RBV) and pegylated interferon alpha are currently administered to cure hepatitis E. Recently, in combination with RBV, sofosbuvir (SOF), an anti-hepatitis C virus nucleotide analog, is also given to patients with chronic hepatitis E. However, this combinatorial therapy sometimes fails to achieve a sustained virological response. In this study, we used 27 antiviral compounds, including 15 nucleos(t)ide analogs, for in vitro screening against a genotype 3 HEV strain containing a Gaussia luciferase reporter. RBV, SOF, 2'-C-methyladenosine, 2'-C-methylcytidine (2CMC), 2'-C-methylguanosine (2CMG), and two 4'-azido nucleoside analogs (R-1479 and RO-9187) suppressed replication of the reporter genome, while only RBV, SOF, 2CMC and 2CMG inhibited the growth of genotype 3 HEV in cultured cells. Although 2CMG and RBV (2CMG/RBV) exhibited a synergistic effect while SOF/RBV and 2CMC/RBV showed antagonistic effects on the reporter assay, these three nucleos(t)ide analogs acted additively with RBV in inhibiting HEV growth in cultured cells. Furthermore, SOF and 2CMG, with four interferons (IFN-α2b, IFN-λ1, IFN-λ2 and IFN-λ3), inhibited HEV growth efficiently and cleared HEV in cultured cells. These results suggest that, in combination with RBV or interferons, SOF and 2CMG would be promising bases for developing anti-HEV nucleos(t)ide analogs.
Development and characterization of recombinant tick-borne encephalitis virus expressing mCherry reporter protein: A new tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays
Antiviral Res 2021 Jan;185:104968.PMID:33157129DOI:10.1016/j.antiviral.2020.104968.
The flavivirus, tick-borne encephalitis virus (TBEV) is transmitted by Ixodes spp. ticks and may cause severe and potentially lethal neurological tick-borne encephalitis (TBE) in humans. Studying TBEV requires the use of secondary methodologies to detect the virus in infected cells. To overcome this problem, we rationally designed and constructed a recombinant reporter TBEV that stably expressed the mCherry reporter protein. The resulting TBEV reporter virus (named mCherry-TBEV) and wild-type parental TBEV exhibited similar growth kinetics in cultured cells; however, the mCherry-TBEV virus produced smaller plaques. The magnitude of mCherry expression correlated well with progeny virus production but remained stable over <4 passages in cell culture. Using well-characterized antiviral compounds known to inhibit TBEV, 2'-C-methyladenosine and 2'-deoxy-2'-β-hydroxy-4'-azidocytidine (RO-9187), we demonstrated that mCherry-TBEV is suitable for high-throughput screening of antiviral drugs. Serum samples from a TBEV-vaccinated human and a TBEV-infected dog were used to evaluate the mCherry-based neutralization test. Collectively, recombinant mCherry-TBEV reporter virus described here provides a powerful tool to facilitate the identification of potential antiviral agents, and to measure levels of neutralizing antibodies in human and animal sera.
Escape of Tick-Borne Flavivirus from 2'- C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness
J Virol 2017 Oct 13;91(21):e01028-17.PMID:28814513DOI:10.1128/JVI.01028-17.
Tick-borne encephalitis virus (TBEV) causes a severe and potentially fatal neuroinfection in humans. Despite its high medical relevance, no specific antiviral therapy is currently available. Here we demonstrate that treatment with a nucleoside analog, 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA), substantially improved disease outcomes, increased survival, and reduced signs of neuroinfection and viral titers in the brains of mice infected with a lethal dose of TBEV. To investigate the mechanism of action of 7-deaza-2'-CMA, two drug-resistant TBEV clones were generated and characterized. The two clones shared a signature amino acid substitution, S603T, in the viral NS5 RNA-dependent RNA polymerase (RdRp) domain. This mutation conferred resistance to various 2'-C-methylated nucleoside derivatives, but no cross-resistance was seen with other nucleoside analogs, such as 4'-C-azidocytidine and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187). All-atom molecular dynamics simulations revealed that the S603T RdRp mutant repels a water molecule that coordinates the position of a metal ion cofactor as 2'-C-methylated nucleoside analogs approach the active site. To investigate its phenotype, the S603T mutation was introduced into a recombinant TBEV strain (Oshima-IC) generated from an infectious cDNA clone and into a TBEV replicon that expresses a reporter luciferase gene (Oshima-REP-luc2A). The mutants were replication impaired, showing reduced growth and a small plaque size in mammalian cell culture and reduced levels of neuroinvasiveness and neurovirulence in rodent models. These results indicate that TBEV resistance to 2'-C-methylated nucleoside inhibitors is conferred by a single conservative mutation that causes a subtle atomic effect within the active site of the viral NS5 RdRp and is associated with strong attenuation of the virus.IMPORTANCE This study found that the nucleoside analog 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA) has high antiviral activity against tick-borne encephalitis virus (TBEV), a pathogen that causes severe human neuroinfections in large areas of Europe and Asia and for which there is currently no specific therapy. Treating mice infected with a lethal dose of TBEV with 7-deaza-2'-CMA resulted in significantly higher survival rates and reduced the severity of neurological signs of the disease. Thus, this compound shows promise for further development as an anti-TBEV drug. It is important to generate drug-resistant mutants to understand how the drug works and to develop guidelines for patient treatment. We generated TBEV mutants that were resistant not only to 7-deaza-2'-CMA but also to a broad range of other 2'-C-methylated antiviral medications. Our findings suggest that combination therapy may be used to improve treatment and reduce the emergence of drug-resistant viruses during nucleoside analog therapy for TBEV infection.