Sagittatoside A
(Synonyms: 箭藿苷A,Icariin-A) 目录号 : GC37581箭藿苷A(Sagittatoside A)是从植物淫羊藿中提取出的天然化合物。
Cas No.:118525-35-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Sagittatoside A is a natural compound isolated from traditional Chinese herb Yinyanghuo (Herba Epimdii).
Cas No. | 118525-35-2 | SDF | |
别名 | 箭藿苷A,Icariin-A | ||
Canonical SMILES | O=C(C1=C(C=C2O)O)C(O[C@H](O[C@@H](C)[C@H](O)[C@H]3O)[C@@H]3O[C@]([C@@H]([C@@H](O)[C@@H]4O)O)([H])O[C@@H]4CO)=C(C5=CC=C(OC)C=C5)OC1=C2C/C=C(C)/C | ||
分子式 | C33H40O15 | 分子量 | 676.66 |
溶解度 | DMSO : 31.25 mg/mL (46.18 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.4778 mL | 7.3892 mL | 14.7785 mL |
5 mM | 0.2956 mL | 1.4778 mL | 2.9557 mL |
10 mM | 0.1478 mL | 0.7389 mL | 1.4778 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Efficient preparation of rare Sagittatoside A from epimedin A, by recyclable aqueous organic two-phase enzymatic hydrolysis
Nat Prod Res 2019 Nov;33(21):3095-3102.PMID:30470129DOI:10.1080/14786419.2018.1519820.
The rare secondary flavonol glycoside Sagittatoside A has much better in vivo bioactivities than epimedin A in Epimedii Folium. However, its current preparation methods are of low efficiency, with byproducts generated. The aim of this study was to establish a novel catalysis system for effective and convenient preparation of Sagittatoside A from epimedin A based on recyclable and integrated aqueous organic two-phase enzymatic hydrolysis. The system was consisted of propyl acetate and HAc-NaAc buffer (pH4.5) containing β-dextranase/epimedin A, and the hydrolysis was performed at 60 °C for 1 h. Consequently, epimedin A was completely hydrolyzed to Sagittatoside A, and 95.02% of the product was transferred into the organic phase. Moreover, 90% of its initial activity was retained after seven cycles of hydrolysis. Additionally, the procedure was simpler than conventional enzymatic hydrolysis. Collectively, the newly proposed strategy is an efficient and promising approach for the preparation of Sagittatoside A in industrial application.
Icaritin Preparation from Icariin by a Special Epimedium Flavonoid-Glycosidase from Aspergillus sp.y848 Strain
J Microbiol Biotechnol 2022 Apr 28;32(4):437-446.PMID:35283431DOI:10.4014/jmb.2112.12036.
In this study, to obtain icaritin with high pharmacological activities from icariin, which has a content ratio of over 58% in the total flavonoids of Epimedium herb, a special Epimedium flavonoid-glycosidase was produced, purified and characterized from Aspergillus sp.y848 strain. The optimal enzyme production was gained in a medium containing 5% (w/v) wheat bran extract and 0.7% (w/v) Epimedium leaf powder as the enzyme inducer, and strain culture at 30°C for 6-7 days. The molecular weight of the enzyme was approximately 73.2 kDa; the optimal pH and temperature were 5.0 and 40°C. The enzyme Km and Vmax values for icariin were 15.63 mM and 55.56 mM/h. Moreover, the enzyme hydrolyzed the 7-O-glucosides of icariin into icariside II, and finally hydrolyzed 3-O-rhamnoside of icariside II into icaritin. The enzyme also hydrolyzed 7-O-glucosides of epimedin B to sagittatoside B, and then further hydrolyzed terminal 3-O-xyloside of sagittatoside B to icarisiede II, before finally hydrolyzing 3-O-rhamnoside of icarisiede II into icaritin. The enzyme only hydrolyzed 7-O-glucoside of epimedin A or epimedin C into Sagittatoside A or sagittatoside C. It is possible to prepare icaritin from the high-content icariin in Epimedium herb using this enzyme. When 2.5% icariin was reacted at 40°C for 18-20 h by the low-cost crude enzyme, 5.04 g icaritin with 98% purity was obtained from 10 g icariin. Also, the icaritin molar yield was 92.5%. Our results showed icaritin was successfully produced via cost-effective and relatively simple methods from icariin by crude enzyme. Our results should be very useful for the development of medicines from Epimedium herb.
Beneficial Effects of a Flavonoid Fraction of Herba Epimedii on Bone Metabolism in Ovariectomized Rats
Planta Med 2016 Mar;82(4):322-9.PMID:26824623DOI:10.1055/s-0035-1558294.
A flavonoid fraction of Herba Epimedii, including eight flavonoid glycoside compounds, epimedoside A, ikarisoside F, baohuoside II, Sagittatoside A, sagittatoside B, 7-O-rhamnosyl icariside II, 2"-O-rhamnosyl icariside II, and baohuoside I, was isolated and prepared from the leaves of Herba Epimedii. This study was conducted to assess the potential effect of the flavonoid fraction of Herba Epimedii on osteoporosis in ovariectomized rats. Rats received repeated administration of a vehicle (ovariectomized), the flavonoid fraction of Herba Epimedii (7.5, 15, 30 mg/kg/d), and ipriflavone (200 mg/kg/d) once a day for 8 weeks, beginning 4 weeks after ovariectomization. Then, the bone turnover markers, bone biomechanical properties, trabecular architecture, and related protein expressions were evaluated by biochemical assay kits, mechanical testing, microcomputed tomography, immunohistochemical evaluation, and Western blot analysis. Treatment with the flavonoid fraction of Herba Epimedii (15, 30 mg/kg/d) and ipriflavone (200 mg/kg/d) significantly increased bone strength while dramatically inhibiting the serum alkaline phosphatase and tartrate-resistant acid phosphatase levels in ovariectomized rats. Furthermore, the flavonoid fraction of Herba Epimedii also increased osteoprotegerin protein expression and reduced the receptor activator of nuclear factor-κB ligand protein expression compared with ovariectomized rats. In addition, the microcomputed tomography results showed that the flavonoid fraction of Herba Epimedii treatment significantly improved trabecular bone mineral density and restored the bone microarchitecture in ovariectomized rats. Therefore, our results indicated that the flavonoid fraction of Herba Epimedii might be beneficial for improving postmenopausal osteoporosis and should be considered as a promising candidate for treating postmenopausal osteoporosis.
Development and Validation of a HPLC-MS/MS Method for Simultaneous Determination of Twelve Bioactive Compounds in Epimedium: Application to a Pharmacokinetic Study in Rats
Molecules 2018 May 31;23(6):1322.PMID:29857519DOI:10.3390/molecules23061322.
A rapid and reliable HPLC-MS/MS method has been developed and validated for the simultaneous quantification of twelve bioactive compounds (baohuoside II, baohuoside I, Sagittatoside A, sagittatoside B, magnoflorine, epimedin A, epimedin B, epimedin C, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid and icariin) in rat plasma. The collected plasma samples were prepared by protein precipitate with acetonitrile. The twelve compounds were separated on a CORTECS®C18 column (4.6 mm × 150 mm, 2.7 μm) with a gradient mobile phase system of 0.1% (v/v) formic acid and acetonitrile at a flow rate of 0.3 mL/min. All of the analytes were quantitated using electrospray ionization (ESI) in negative ion mode with selected reaction monitoring (SRM). The intra- and inter-day accuracy ranged from -5.6% to 13.0%, and the precisions of the analytes were less than 10.9%. The mean recoveries of the analytes were in the range of 60.66% to 99.77% and the matrix effect ranged from 93.08% to 119.84%. Stability studies proved that the analytes were stable under the tested conditions, with a relative standard deviation (RSD) lower than 11.7%. The developed method was successfully applied to evaluating the pharmacokinetic study of twelve bioactive compounds after oral administration of Epimedium extract in rat.
Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo
Molecules 2011 Feb 1;16(2):1336-48.PMID:21285919DOI:10.3390/molecules16021336.
Purpose: Yinyanghuo (Herba Epimdii) is a traditional Chinese herb containing prenylated flavonoids as its active constituents. The aim of this study was to examine the significance of the intestinal hydrolysis of prenylated flavonoids by lactase phlorizin hydrolase (LPH), an enzyme at the brush border membrane of intestinal cells. Methods: A four-site perfused rat intestinal model was used. The concentration of the flavonoids of interest and their metabolites in different intestinal segements were analyzed by HPLC, and the apparent permeabilities were calculated. A lactase phlorizin hydrolase inhibitor (gluconolactone) was employed to investigate the mechanism of the intestinal absorption, and the metabolites of the four flavonoids were identified using LC/MS/MS. Results: Diglycosides (icariin) or triglycosides (epimedin A, epimedin B, and epimedin C) were hydrolyzed rapidly in duodenum and jejunum producing one or two metabolites, while a monoglycoside (baohuoside I) was absorbed directly. When co-perfused with glucono-lactone, both the hydrolysis of diglycosides and triglycosides were significantly inhibited, with inhibition rates for icariin (62%, 50%, 40%, 46%), epimedin A, (55%, 26%, 21%, 14%); epimedin B (42%, 40%, 74%, 22%), and epimedin C (42%, 40%, 52%, 35%) in duodenum, jejunum, ileum, and colon, respectively. Also the metabolites of icariin, epimedin A, epimedin B, and epimedin C were identified as baohuoside I (one of two), Sagittatoside A, sagittatoside B, and 2"-O-rhamnosylicariside II, respectively. Conclusions: The results showed that lactase phlorizin hydrolase was a major determinant of the intestinal absorption of prenylated flavonoids present in Yinyanghuo.